

# **A Tour of ELToD4 Model**

Lihe Wang, P.E. Aichong Sun, P.E., Ph.D. David B. Roden, P.E.

January 22, 2020

## What is ELToD4?

- ELToD4 stands for Express Lanes Time of Day Model version 4
- It is a Dynamic Traffic Assignment (DTA) model to forecast traffic and revenue for complex express lane networks in large metropolitan area





AECOM

Source: SCAG 2012-2035 RTP

## **Development Timeline**

|            | ELToD1   |      |          | ELToD2     |         | ELToD3 |      | ELToD4   |        |      |      |  |
|------------|----------|------|----------|------------|---------|--------|------|----------|--------|------|------|--|
|            | 2010     | 2011 | 2012     | 2013       | 2014    | 2015   | 2016 | 2017     | 2018   | 2019 | 2020 |  |
| Software   | Excel    |      | Cube     | ube VB.net |         | C++    |      |          |        |      |      |  |
| Туре       | Static   |      | Static   | ic DTA     |         | DTA    |      |          |        |      |      |  |
| Area       | Corridor |      | Corridor | Sub        | Subarea |        |      | Regional |        |      |      |  |
| Resolution | Hourly   |      |          | Hourly     | 15-     | 15-min |      |          | 15-min |      |      |  |

A'S Ke

In collaboration with:



## **Benefits of Using ELToD4 Model**

Consistency in methodology and results

- Consultants
- Projects
- Over time



Savings in project time and budget



Easy quality control



Practice-ready for project needs

FREE

#### **Open Source**

Continuous support and improvement





#### **Model Transferability**

- ELToD4 is flexible and customizable to work with any existing regional models
  - Traditional four-step or ABM
  - Cube or TransCAD



# **Express Lanes Model Considerations**



### **Observed Traffic and Toll Rate**









### **Time and Effort Requirement**



#### **Express Lanes Choice**

- Willingness to pay is measured by Value of Time (VOT) and Value of Reliability (VOR)
- VOT and VOR vary by person and trip



### **Distributed Value of Time (VOT)**



Trip VOT Distribution by Income



Work Trip

#### Value of Reliability

 Value of Reliability (VOR) is the willingness to spend money to reduce the standard deviation of travel time

 $Reliability Ratio = \frac{VOR}{VOT}$ 

- Reliability values range from 0.5 to 2.5 in the SHRP2 Reliability Report

#### **Binary Toll Choice Model**

$$P_{EL} = \frac{1}{1 + e^{(Utility)}}$$

- Predict the probability of choosing two choices
- Produce "smooth" instead of "abrupt" responses to toll changes

#### Express Lanes Toll Diversion



#### **Mixed Multinomial Logit Toll Choice Model**

Toll Share =  $\frac{1}{1+e^{(Utility)}}$ 

where

 $Utility = -1 * (\beta_Constant + \beta_Time * Time + \beta_Toll * Toll + \beta_Reliability * Reliability)$ 

$$Reliability = \gamma_r \times \left( Time_{Congested} - Time_{FreeFlow} \right) \times (Distance)^{-\eta_r}$$

$$VOT = \frac{60 * \beta_{\rm Time}}{\beta_{\rm Toll}}$$

$$VOR = \frac{60 * \beta_{\text{Reliability}}}{\beta_{\text{Toll}}}$$

AECOM

\*Reliability formula is base on TRB SHRP2 Report S2-L04-RR-1, Incorporating Reliability Measures into Operation and Planning Model Tools, 2014, page 37

#### **Choice Model Toll Sensitivity**



Express Lanes Traffic Distribution by VOT Group

■VOT1 ■VOT2 ■VOT3 ■VOT4 ■VOT5



Time savings = 1 minute; Distance = 4 miles; Income = \$85,000

# **Time Dependent Shortest Path (TDSP)**



- Static Shortest Path uses average link travel time of a time period (several hours)
- TDSP uses the travel time when the vehicle is going through the link

## **En-route Toll Choice Making**

To simulate driver's behavior:

- Other models assign all trips to one shortest time path
  - Toll converted to time penalty
- ELToD4 splits the trips at each decision node using an en-route toll choice model
  - Reflect heterogeneity in the population
  - Drivers only know the toll when they are at the entrances and exits



#### **Toll Policy Curves**

 $Toll = Min + (Max - Min) \times (VC \ Ratio - Offset)^{Exp}$ 



#### Example of Toll Policy Curves

- Adjust toll rate based on V/C Ratio at 15 minutes interval
- Flexible to be applied by facilities and time of day
- A toll policy example: Dynamic toll during peak hours and static toll rates during off-peak hours

#### **Model Result Example**



Florida I-95 express lanes segment 1 Southbound

AECOM

## **Connected and Autonomous Vehicle (CAV) Module**

#### Socioeconomics Input



 High income family and urban areas will adopt CAVs first

#### Adoption Rate Variation by TAZ





60%

70%

80%

90%

100%

#### **Capacity with CAVs**

Speed by CAV Percentage

**——**0% **——**20% **——**40% **——**60% **——**80%



0%

10%

20%

30%

40%

50% CAV PERCENTAGE

#### **Example: CAV Model Outputs**



## **Example: CAV Impact Analysis**

Question: What is the CAV impact to transactions comparing 2-lane and 4-lane express lanes network in 2045?

Variables Tested:

- Technology
  CAV headway reduction
- Regulation
  CAV preference on limited access road
- Driver behavior
  CAV has lower value of time

#### **TECHNOLOGY**



#### REGULATION



#### **BEHAVIOR**



#### **COMBINED IMPACT**



AECOM

## **Hybrid Simulation Module - Ongoing**

Integrate mesoscopic simulation into the regional model





# **Any questions?**

# **Contact us**

Lihe Wang, P.E. Consulting Manager D 703-340-3030 <u>lihe.wang@aecom.com</u>

Aichong Sun, P.E., Ph.D. Consulting Manager D 703-340-3075 aichong.sun@aecom.com

David B. Roden, P.E. Senior Consulting Manager D 703-340-3069 david.roden@aecom.com