Public Health Working Group

July 14, 2015

Rye Baerg
Active Transportation and Special
Programs

Agenda

- Introductions
- Public Health Work Plan Progress
- SPM Public Health Module
- Draft 2016 RTP/SCS Public Health Strategies and Actions
- Wrap UP/Next Steps

Public Health Work Plan Progress

July 14, 2015

Rye Baerg
Active Transportation & Special
Programs

SCAG Focus: Public Health Work Program

Goals and Strategies

Provide Leadership through Collaboration and Partnerships

Integrate Public Health into Regional Planning Activities

Provide Regional Support through Technical Assistance

FY 14-15 Action Plan Deliverables

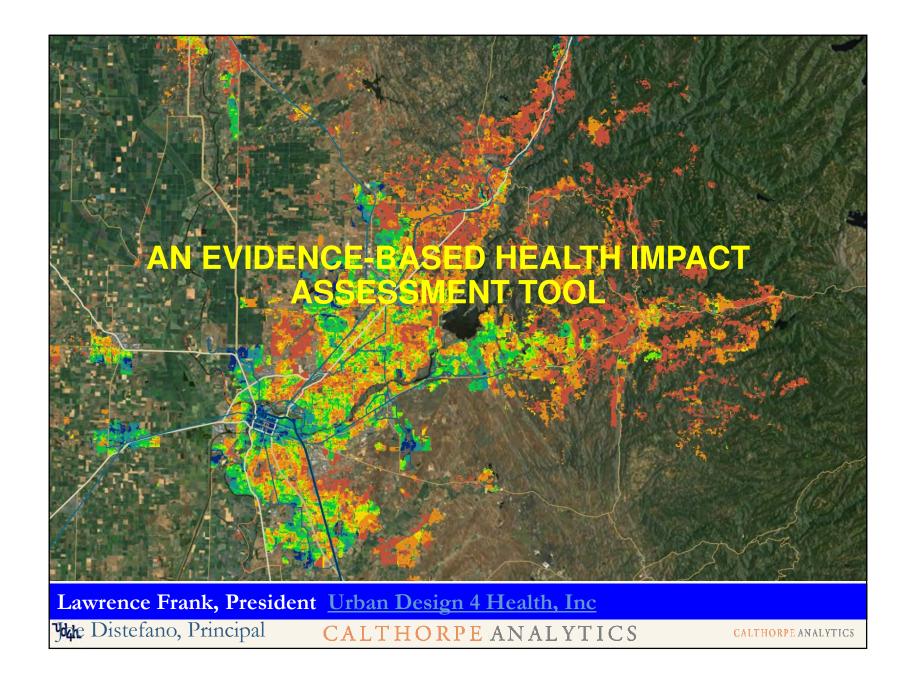
Randall Lewis Health Policy Fellowship Safety and Encouragement Campaign

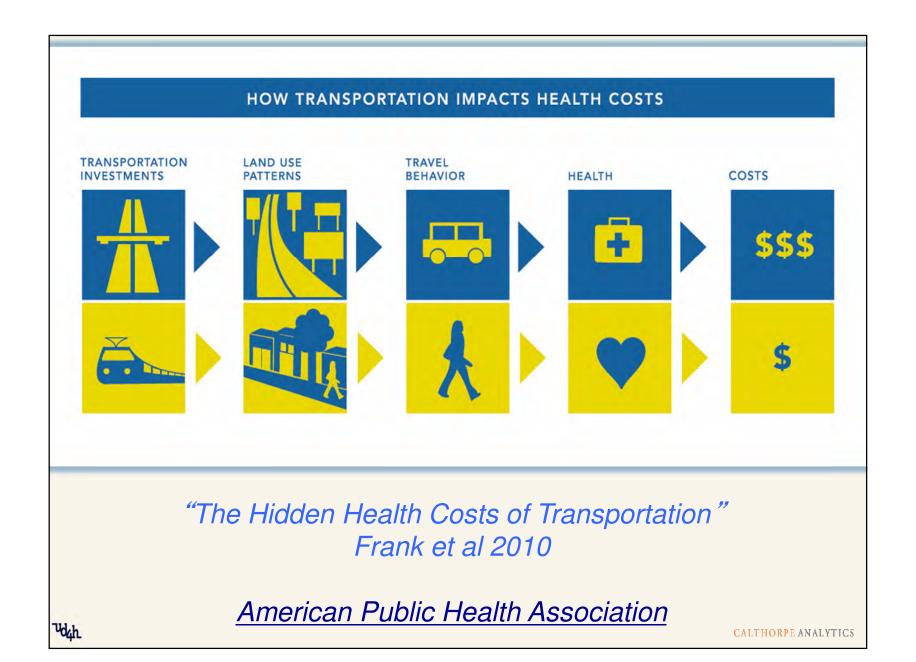
Public Health Working Group

Active Transportation Health and Economic Impact Study

Active Transportation Trainings and Toolkits

Public Health Analysis Framework to inform 2016 RTP/SCS


Website Upgrades


SPM Public Health Module

July 14, 2015

Larry Frank – UD4H Joe Distefano – Calthorpe

California Public Health Assessment Model: Project team members

- Steering Committee:
 - Strategic Growth Council
 - Governor's Office of Planning
 & Research
 - Calif. Health & Human Services Agency
 - Calif. Dept. of Public Health
 - Sacramento Area Association of Governments
 - Southern Calif. Association of Governments
 - San Diego County Dept. of Public Health

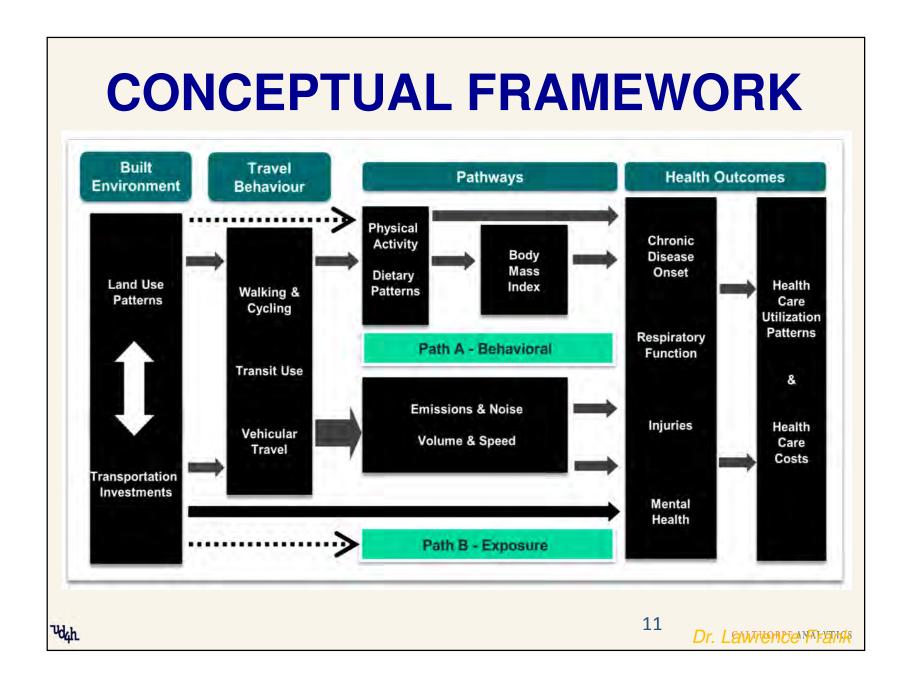
- □ Tech Advisory Committee:
 - UC Berkeley Safe
 Transportation Research &
 Education Center
 - Centers for Disease Control
 - Resource Systems Group
 - UCLA Center for Health Policy
 - LA County Dept. of Public Health
 - RAND Corporation
- Consultants: Urban Design 4 Health
 - Calthorpe Analytics

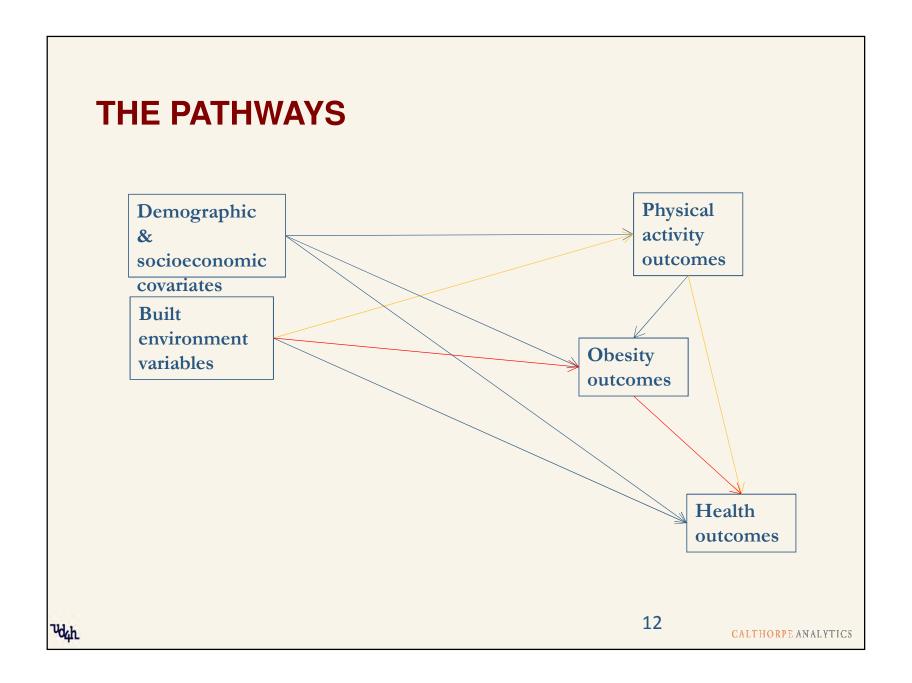
Study Region

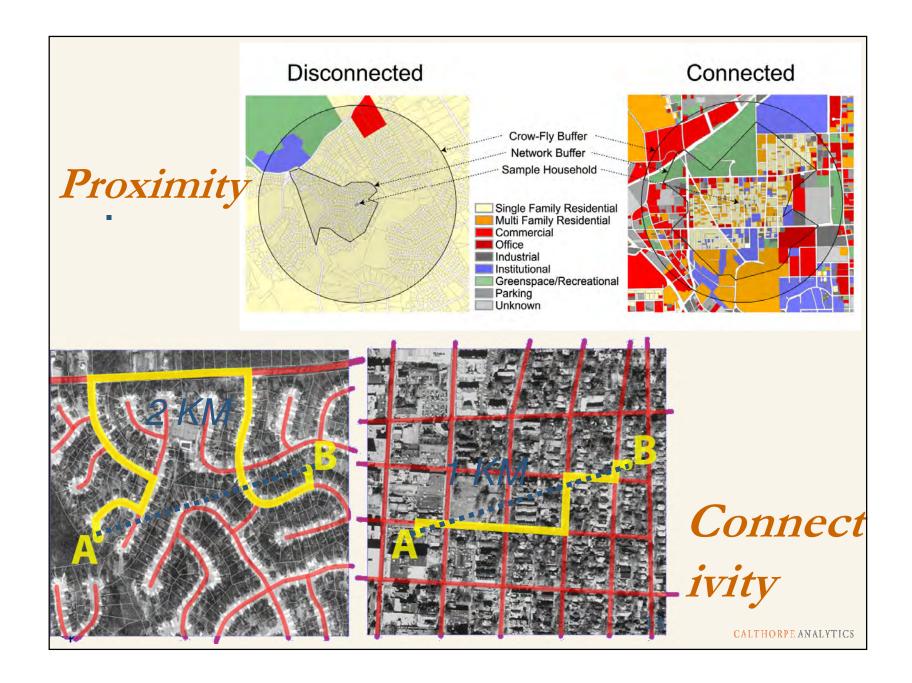
30 counties across five California regions:

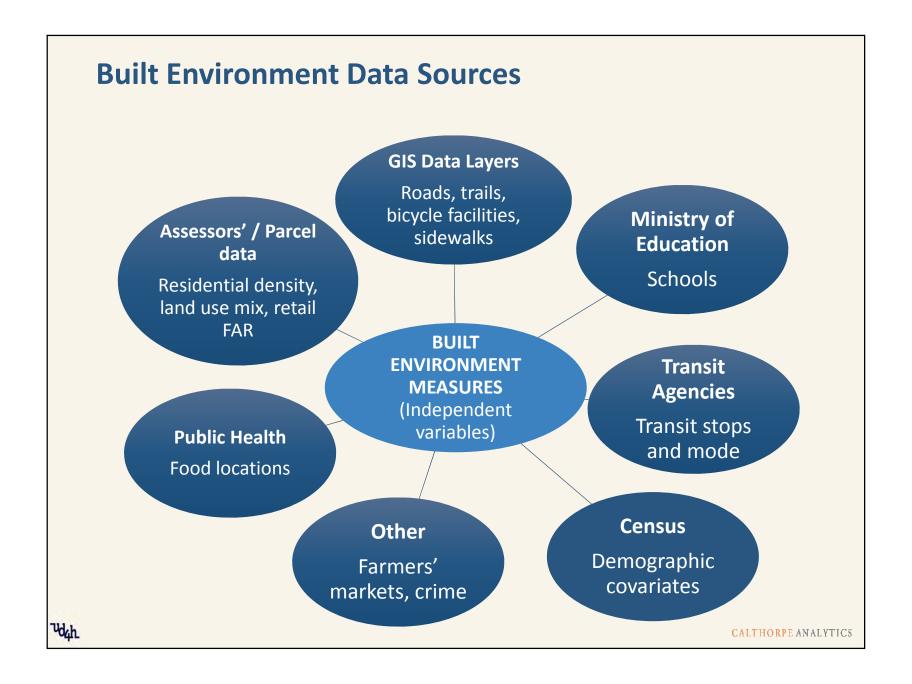
- San Francisco Bay Area
- Sacramento
- San Diego County
- San Joaquin Valley
- Southern California (including Los Angeles)

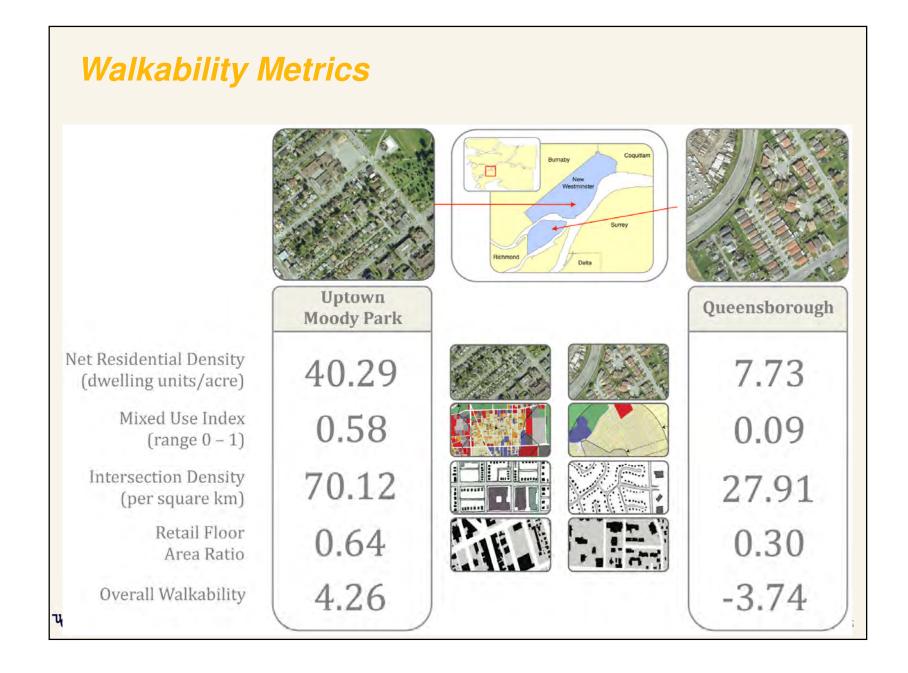
9

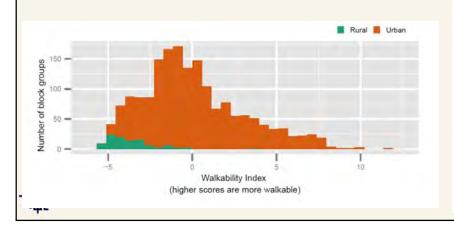


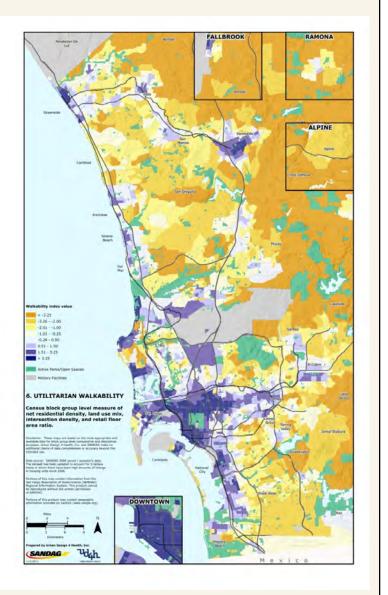

Integrating health into Scenario planning framework


- Integrating health metrics into scenario planning results in a quantitative Health Impact Assessment tool
- VERY Different approach than HEAT AND ITHIM
 - Allows land use and urban design features to be directly linked with health outcomes
- California Evidence Significant within 5% accuracy within an average block group allowing neighborhood scale planning
 - approximately 1800 people
- Makes the best use of existing data and has been reviewed and approved through a multi-stakeholder interdisciplinary peer review panel
 - Approved 2 times over the past 3 years through a CA state level IRB process for data access




10





Utilitarian Walkability

Made up of: Residential density, retail Floor Area Ratio, intersection density, land use mix

Regional walkability distribution, by block group

California Data sources

Provide Calif. demographics, socioeconomic status, behaviors, and health conditions:

- **UrbanFootprint** (UF) built environment, demographic, and socioeconomic data
- Calif. Health Interview Survey (CHIS)
- Calif. Household Transport. Survey (CHTS)

17

Strengths of approach

- Large sample sizes
 - 53,733 CHTS participants
 - 40,617 CHIS participants
- Strata-specific model development
 - 4 age groups (seniors, adults, teens, children)
 - For adults, three HH income groups (<\$50k, \$50-100k, >\$100k)
- California-specific evidence base
 - CHIS and CHTS data were collected from a representative crosssection of Californians
- Variability in built environment characteristics
 - 30-county study area covers a broad range of built environments and travel behaviors across California

18

Model Variables - Built Environment

- Walkability index
 - dwelling unit count w/n 1km
 - residential density w/n 1km
 - retail floor area w/n 1km
 - non-residential FAR w/n 1km
 - distance to nearest retail
 - distance to nearest restaurant
 - land use mix w/n 1km
 - intersection density w/n 1km
 - local street length w/n 1km
- Transit access index
 - transit stop count w/n 1km
 - distance to nearest transit stop
- Rail transit access within 2km

- Major road index
 - major street length w/n 1km
 - any major road within 500m
- Regional accessibility index
 - regional residential accessibility
 - regional employment accessibility
- Distance to nearest school
- Park access
 - Park acres w/n 1km
 - Distance to nearest park

19

Model Variables - Covariates

- Age
- Sex
- Race/ethnicity
- Educational attainment
- Adult employment status
- Adult home ownership

- Household income
- Household size
- Household vehicle availability
- Disability status
- Presence of children

"Ud4h

Model development notes

- One age group-specific preliminary model was generated for each outcome with all income groups pooled together
 - Three additional models were then generated after further stratifying each age group by income group for adults
- Two-part regression was used for zero-inflated outcomes (e.g. transportation walking):
 - Part 1: binary logistic regression
 - used to model the likelihood of any activity versus no activity
 - Part 2: linear regression
 - used to model the amount of activity in minutes for only the portion of the sample with
 >0 minutes

^Ud4h

Example: Calculating two-part model predictions

- 1. Estimate the likelihood of any physical activity
- 2. Estimate the amount of physical activity for those w/ any
- 3. Multiply (likelihood) **x** (min. for those w/ any)

Outcome	Likelihood	Minutes for those with any	Predicted minutes
Transportation walking	49.0%	113.8	55.7
Recreational walking	64.5%	135.8	87.6
Moderate PA	59.7%	186.9	111.5
Vigorous PA	33.9%	180.8	61.3
Total PA	NA	NA	316.2

Model development notes (cont.)

- All models adjust for:
 - All covariates
 - Categorical covariates have not yet been collapsed
 - All final built environment variables
- BMI/overweight/obesity models also adjust for:
 - Total minutes of physical activity (adults/seniors)
 - -# days/wk with >60 minutes PA (teens/children)
- Health outcome models also adjust for:
 - Physical activity variables indicated above
 - BMI (adults/seniors) or BMI% (teens/children)

"Ugh

Model fitting process

- Add all covariates to the model
- 2. Add each built environment variable to the model one-at-a-time and fit the regression model (once for each BE variable)
- 3. Add all built environment variables to the model simultaneously and fit the regression model

"Ugh

Models fitted

			Age	cohort			
	Adult	ts, by inc	come:	Senior	Teen	Child	Outcome
Data set	Low	Med	High				
	X	X	X	X			Walking for transportation (min/wk)
	X	X	X	X			Walking for recreation (min/wk)
	X	X	X	X			Moderate physical activity (min/wk)
	X	X	X	X			Vigorous physical activity (min/wk)
					X	X	Days/week > 60 min physical activity
CHIE					X	X	Likelihood to walk/bike from school
CHIS	X	X	X	X	X	X	Body mass index
	X	X	X	X	X	X	Likelihood to be obese
	X	X	X	X			Likelihood to have high blood pressure
	X	X	X	X			Likelihood to have heart disease
	X	X	X	X			Likelihood to have type 2 diabetes
	X	X	X	X	X	X	Likelihood to have poor health
	X	X	X	X	X	X	Walking for transportation (min/day)
CLITC	X	X	X				Biking for transportation (min/day)
CHTS	X	X	X	X	X	X	Automobile travel (min/day)
	X	X	X	X	X	X	Recreational physical activity (min/day)
<u>I</u>							CALTHORPE ANALY

Example model (part 1)

• Outcome = CHTS likelihood of any active transportation, binary logistic regression

	Coefficient	Standard	z value	p value
		Error		
(Intercept)	0.6410	0.1531	4.1860	0.0000
Gender = female	-0.1874	0.0307	-6.1036	0.0000
Age	-0.0079	0.0014	-5.6287	0.0000
Race/eth = white, non-Hispanic	-0.1099	0.0459	-2.3960	0.0166
Race/eth = African American, non-Hispanic	-0.1061	0.0820	-1.2941	0.1956
Race/eth = American Indian/Alaska native	0.0534	0.2370	0.2255	0.8216
Race/eth = Asian	-0.2632	0.0537	-4.9034	0.0000
Race/eth = Native Hawaiian/Pacific islander	0.6327	0.3805	1.6630	0.0963
Race/eth = other	-0.1533	0.1150	-1.3338	0.1823
Employed = no	0.1198	0.0337	3.5537	0.0004
Education = High school diploma	-0.0871	0.0640	-1.3607	0.1736
Education = Some college, no degree	-0.0431	0.0697	-0.6179	0.5366
Education = Vocational of associate's degree	-0.1140	0.0758	-1.5034	0.1327
Education = Bachelor's degree	-0.0400	0.0676	-0.5914	0.5542
Education = Graduate degree	0.1162	0.0724	1.6050	0.1085
Home owner = no	0.2423	0.0383	6.3199	0.0000
Household size	-0.0096	0.0113	-0.8422	0.3997

Ud4h.

Example model (part 2)

	Coefficient	Standard Error	z value	p value
Income = \$10,000-\$25,000	-0.0007	0.0897	-0.0077	0.9939
Income = \$25,000-\$35,000	-0.1003	0.0973	-1.0312	0.3025
Income = \$35,000-\$50,000	-0.3524	0.0940	-3.7492	0.0002
Income = \$50,000-\$75,000	-0.3343	0.0909	-3.6763	0.0002
Income = \$75,000-\$100,000	-0.2262	0.0948	-2.3845	0.0171
Income = \$100,000-\$150,000	-0.2836	0.0930	-3.0511	0.0023
Income = \$150,000-\$200,000	-0.2297	0.1010	-2.2756	0.0229
Income = \$200,000-\$250,000	-0.1371	0.1140	-1.2020	0.2294
Income = >\$250000	-0.1114	0.1102	-1.0107	0.3122
Walkability index	0.0271	0.0056	4.7983	0.0000
Intersection density	0.0243	0.0052	4.6324	0.0000
Transit distance	-0.0123	0.0093	-1.3205	0.1867
Rail access %	0.2832	0.0580	4.8837	0.0000
Major road exposure %	-0.0927	0.0377	-2.4621	0.0138
Regional access	0.0566	0.0095	5.9673	0.0000
School distance	-0.0250	0.0073	-3.4244	0.0006
Park access	0.0137	0.0090	1.5182	0.1290

Ud4h.

Example CHTS adult model results

Outcome	Walkability index	Transit access	Rail access	Major road exposure	Regional access	Distance to school	Park access
any walking for transportation	+++	+++	+++		+++		+++
minutes/day transport walking for those with any	+++		++		++		+
any recreational PA	+++						+++
minutes/day of recreational PA for those with any				+			

+++	Positive association, p < 0.001 (strong statistically significant)
++	Positive association, $p < 0.05$ (statistically significant)
+	Positive association, $p > 0.05$ (not statistically significant)
-	Negative association, $p > 0.05$ (not statistically significant)
	Negative association, $p < 0.05$ (statistically significant)
	Negative association, p < 0.001 (strong statistically significant)
	Variable was tested but not selected for inclusion in the model
NA	Variable was not tested for the model

¹d₄h

28

Example CHIS adult model results

Outcome	Total PA (MET- minutes)	BMI	Walkability index	Transit access	Rail access	Major road exposure	Regional access	Distance to school	Park access
likelihood of being overweight or obese		NA		-		+			
likelihood of having high blood pressure		+++						+	-
likelihood of having heart disease		+++							-
likelihood of having type 2 diabetes		+++	++						
likelihood of having poor self-reported health		+++	+	+	-	+			

+++	Positive association, $p < 0.001$ (strong statistically significant)
++	Positive association, $p < 0.05$ (statistically significant)
+	Positive association, $p > 0.05$ (not statistically significant)
-	Negative association, $p > 0.05$ (not statistically significant)
	Negative association, $p < 0.05$ (statistically significant)
	Negative association, $p < 0.001$ (strong statistically significant)
	Variable was tested but not selected for inclusion in the model
NA	Variable was not tested for the model

"Uch

29

UrbanFootprint demo model application

- Demo application compares:
 - Observed outcomes from CHIS/CHTS samples
 - Estimated outcomes when applying models to base data
 - Estimated outcomes after modifying all built environment variables by 1 decile in "healthful" direction (as shown to right)

	Change
BE variable	scenario
Residential density	+ 0.9
(units/acre)	+ 0.9
Non-residential FAR	+ 0.04
Retail distance (m)	- 62
Restaurant distance (m)	- 35
Land use mix index	+ 0.04
Intersection density (int/sq mi)	+ 17
Transit count	+ 8
Transit distance (m)	- 98
Rail access %	+ 0.97%
Major road exposure %	-2.13%
Park area (acres)	+ 6.4
Park distance (m)	- 95
School distance (m)	- 35

"Udah

30

CHIS Adult Models

Mean value- Observed vs. Model, Mean Change- Model vs. Alternative

Outcome	mean sample observed outcome	mean base predicted outcome	mean change predicted outcome	absolute change (base predicted – change predicted)	% change
minutes of transportation walking (daily)	5.0	5.0	6.0	1.0	19.1%
minutes of transportation biking (daily)	1.2	1.1	1.3	0.2	17.8%
minutes of automobile transportation (daily)	74.9	75.2	74.3	-0.9	-1.2%
minutes of recreational PA (daily)	17.9	17.9	18.4	0.5	2.7%
body mass index	26.9	26.8	26.7	-0.2	-0.7%
likelihood of being overweight or obese	56.4%	56.4%	54.7%	-1.7%	-3.0%
likelihood of being obese	23.4%	23.3%	22.3%	-1.0%	-4.3%
likelihood of having high blood pressure	25.8%	25.7%	24.9%	-0.8%	-3.0%
likelihood of having heart disease	4.8%	4.7%	4.6%	-0.1%	-2.1%
likelihood of having type 2 diabetes	6.1%	5.9%	5.6%	-0.3%	-5.0%
likelihood of having poor self-reported health	17.8%	17.6%	17.5%	-0.2%	-0.9%

External Validation Results

- Results based on applying draft models to every grid cell in 30-county UF study area
 - Based on preliminary UF data
- BRFSS:

					Heart	Type 2	Poor
Validation set	ВМІ	Overweight	Obese	High BP	disease	Diabetes	health
BRFSS adults	27.3	34.7%	26.5%	NA	NA	NA	17.1%
UF adults	27.5	36.7%	21.9%	23.6%	3.0%	4.0%	15.7%

• NHTS

Validation set	Walk minutes	Bike minutes		Recreational PA minutes
NHTS adults	7.5	1.2	70.7	NA
UF adults	5.6	1.0	81.8	15.9
			32	CALTIL

32

Variable Definitions

Dwelling units in transit measure of residential proximity to jobs weighted by commute trips

shed

generated by job type

Employment in transit

shed

measure of employment availability weighted by commute trips generated

by job type

Mixed land use

index

Entropy measures based on building floor area of residential, retail,

restaurant/entertainment, office, public admin istration

Residential access index (resmix_dens - 1.82) / 0.9478 + (du_1km_tr - 7.451) / 1.8664

Commercial access index 2*((bldg_sqft_ret - 24.38) / 10.4543) + 2*((far_nonres - 0.5938) / 0.2064) -

(retail_distance - 13.91) / 13.5014 - (restaurant_distance - 599.4) /

670.6584

Park access index (acres parcel park open space 1km - 1.704) / 1.0956 -

(park open space distance - 18.48) / 11.3701

Regional access index (du_variable - 24.92) / 6.0667 + (emp_variable - 26.13) / 7.2701

Transit access index 2*((transit count - 3.769) / 3.9104) - (transit distance - 4.602) / 1.8653

Major road exposure

index

(major_street - 0.6099) / 0.8575 + (freeway_arterial_any - 0.2126) / 0.4092

Walkability index

(standard)

2*((res_index - 0.000221) / 1.9586) + 1.5*((network_index - 1.65E-16) / 1.846573714) + (com_index - 0.0005076) / 5.3122 + 0.5*((mix5 - 0.4379) /

0.1840)

SPZs assigned an LDC

Land Development Categories – each SPZ assigned, for base & future

Urban

- Dwelling Units/Acre > 40 OR Employment/Acre> 70
- Intersection density (per mile) > 150

Compact Walkable

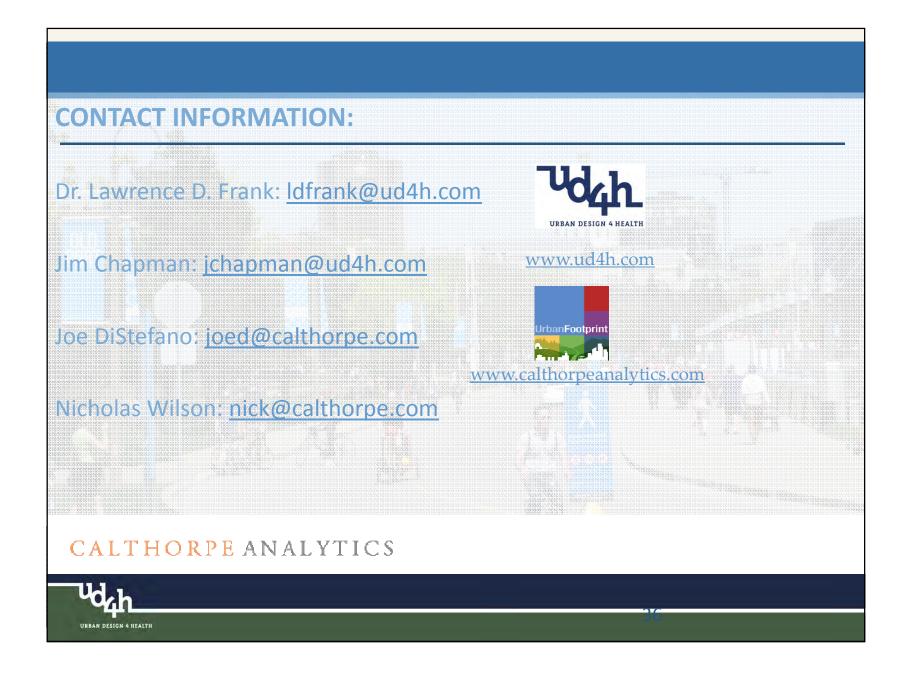
- Dwelling Units/Acre < 40 AND Employment/Acre < 70
- Intersection density (per mile) > 150

Standard Suburban

Intersection density (per mile) < 150

Transit

- YES: high quality transit stop/station within 1km of SPZ centroid
- NO: high quality transit stop/station NOT within 1km of SPZ centroid
- **High quality transit**: A rail stop or a bus corridor that provides or will provide at least 15-minute frequency service during peak hours


Comparison Methodology

- Base to future -- What stays the same?
 - people
 - locations
 - Compare SPZs with same base/future Land Development Categories
- Base to future -- What changes?
 - built environment & presence of transit (as categorized by LDC)
 - >20 pairs of base/future LDCs
 - Chose 5 pairs (with largest change) to present

Comparison Pair	Urban form change (LDC)	Transit	# of SPZ
1	standard to compact	no	26
2		future only	151
3	standard to urban	no	6
4		future only	4
5	Compact no change	future only	106

- physical activity & health outcomes
 - population weighted means are reported here

SCAG Joint Public Health/ SPM Working Group Meeting

CALTHORPE ANALYTICS

A Presentation by Calthorpe Analytics July 14, 2015

CALIFORNIA PUBLIC HEALTH ASSESSMENT MODEL

SCAG Joint Public Health/ SPM Working Group Meeting

A Presentation by Calthorpe Analytics & UrbanDesign4Health July 14, 2015

2016 RTP/SCS Scenario Alternatives

Ud4h.

Projections (2012-2040) 21% Population Growth 25% Housing Growth 32% Jobs Growth	 2012 Base Year: 18 million population, 6.4 million homes, 7.4 million jobs 2012-2040 Change: 3.7 million population, 1.6 million homes, 2.4 million jobs 2040 End State: 21.7 million population, 8 million homes, 9.8 million jobs 			
	TREND	2012 PLAN UPDATE	POLICY A	POLICY B
Theme	Past trends extrapolated forward	How does the 2012 Plan look 4 years later?	More focused land use to meet shifting demographics and preferences	More aggressive transit investments, land use coordination technology change
Transportation Network	✓ 2012 RTP Network	Network ✓ HQTA/TPA Focus per local plans	✓ Updated 2012 RTP Network ✓ Additional HQTAs ✓ Active Transport Investment ✓ Improved Walkability ✓ 'Last-Mile' Focus	✓ Updated 2012 RTP Network + New ✓ Increase in bus headways ✓ Additional Active Transport Investment ✓ Improved Walkability ✓ 'Last-Mile' Focus

39

1. Trend

¹⁴d4h

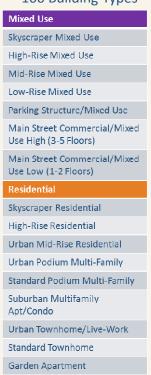
2. 2012 Plan Update

¹⁴d4h

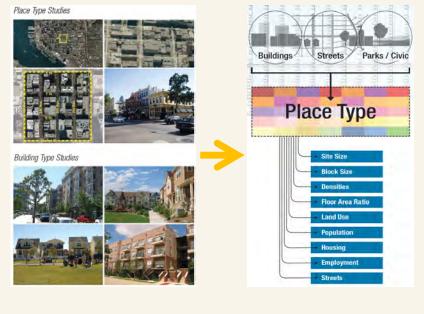
3. Policy A

Ud4h.

4. Policy B


Ud4h.

Place Types


35 Detailed Types

Urban Mixed Use Mixed Use Centers and Corridors 2 Urban Residential 3 Urban Commercial 4 City Mixed Use 5 City Residential 6 City Commercial 7 Town Mixed Use 8 Town Residential 9 Town Commercial 10 Village Mixed Use 11 Village Residential 12 Village Commercial 13 Neighborhood Residential 14 Neighborhood Low 15 Office Focus 16 Mixed Office and R&D 17 Office / Industrial 18 Industrial Focus 19 Low-Density Employment Park

~ 100 Building Types

Studies of Places Across California and the West

Place Types

35 Detailed Types

Key Characteristics

Density

Mix of Uses

Street Connectivity

Location/Accessibility

Land Patterns

Irban

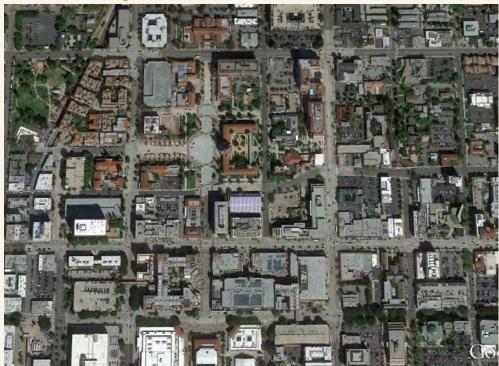
Compact

Standard

Urban

Land Development Category (LDC)

744h


Land Development Category (LDC)

Urban

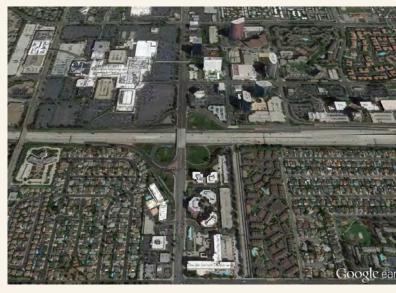
¹⁴d4h

Land Development Category (LDC) Compact Walkable

744h

Land Development Category (LDC) Compact Walkable

Land Development Category (LDC) Standard Suburban



744h

Land Development Category (LDC) Standard Suburban

¹⁴d4h

Walkability Standard Compact Urban 65 / ml² 60 / mi² 210 / mi² 225 / mi² 80 / mi² Auto-Oriented **~150**/ Walkable Ud4h. **CALTHORPE ANALYTICS**

Intensity and Mix of Use Standard Compact Urban 2.0 / ac 40+ du/ac <2-50+ du/ac ~12-40 du/ac <10-70+ ~10-70 emp/ac 70+ emp/ac emp/ac Auto-Oriented mi² Walkable Ud4h. **CALTHORPE** ANALYTICS

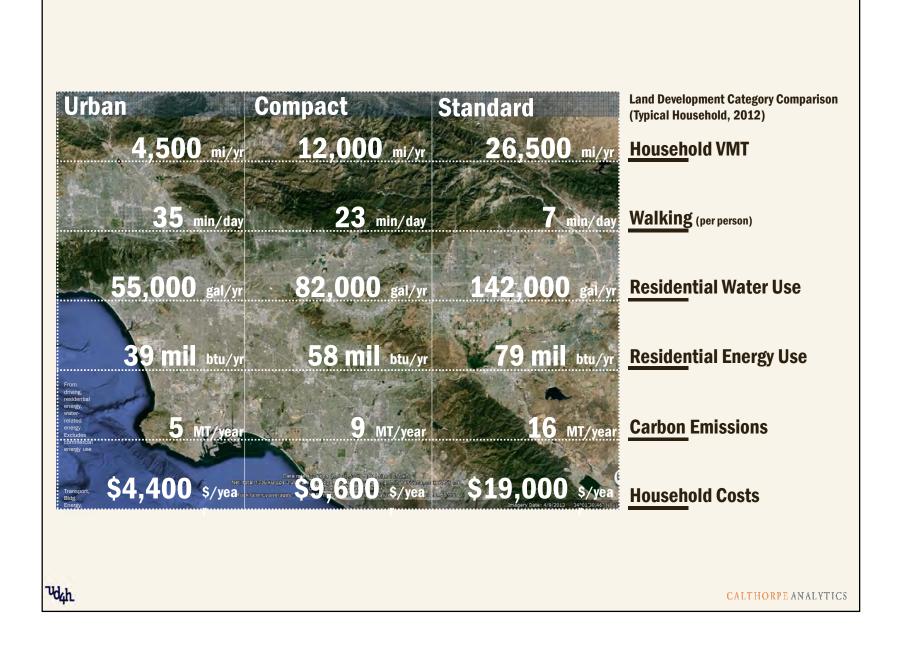
Household Driving & Walking

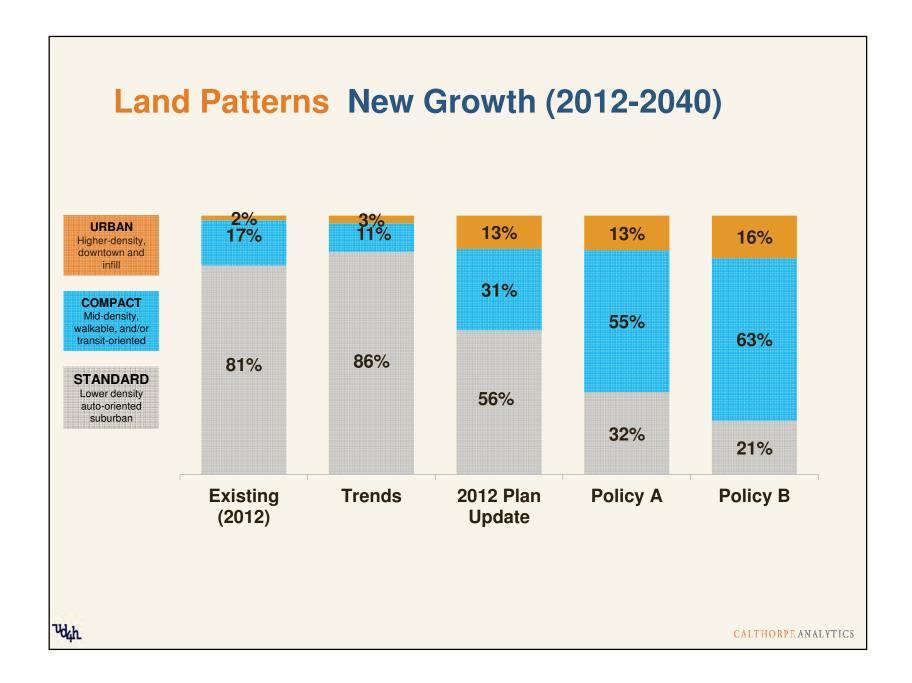
76 miles/day

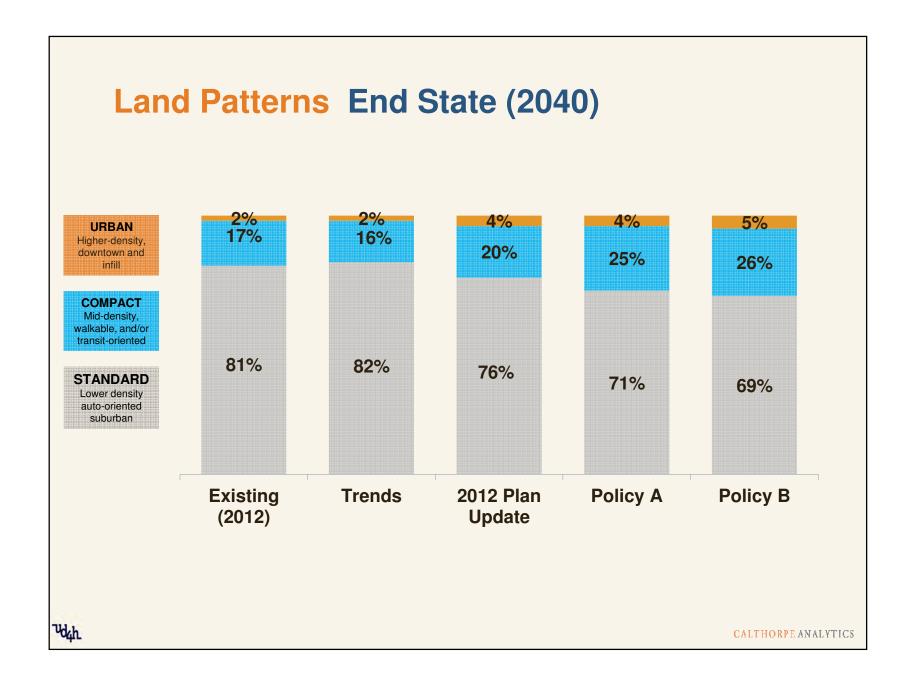
X

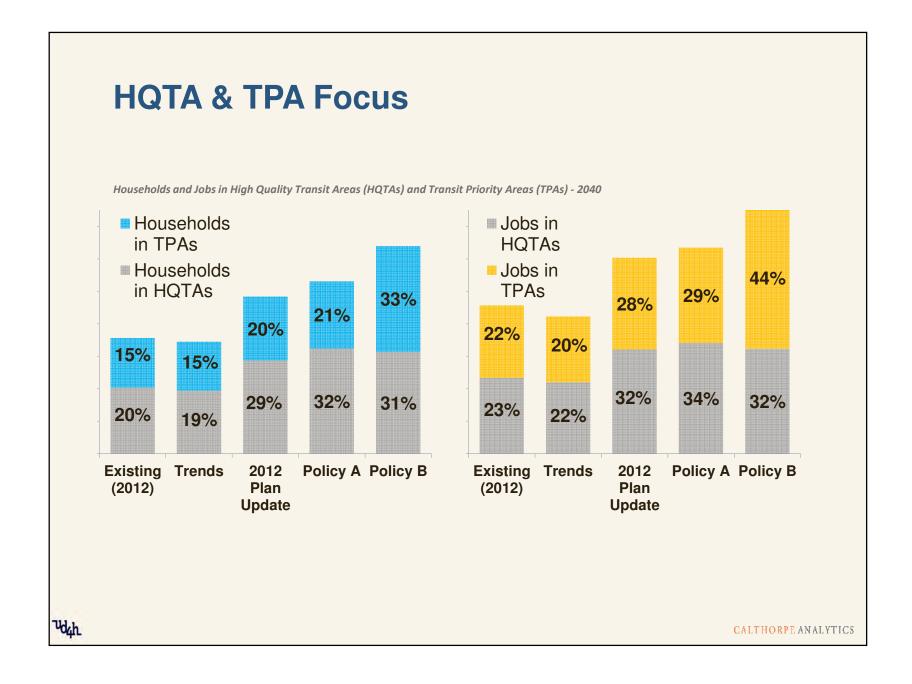
7 min/day

35 miles/day


23 min/day

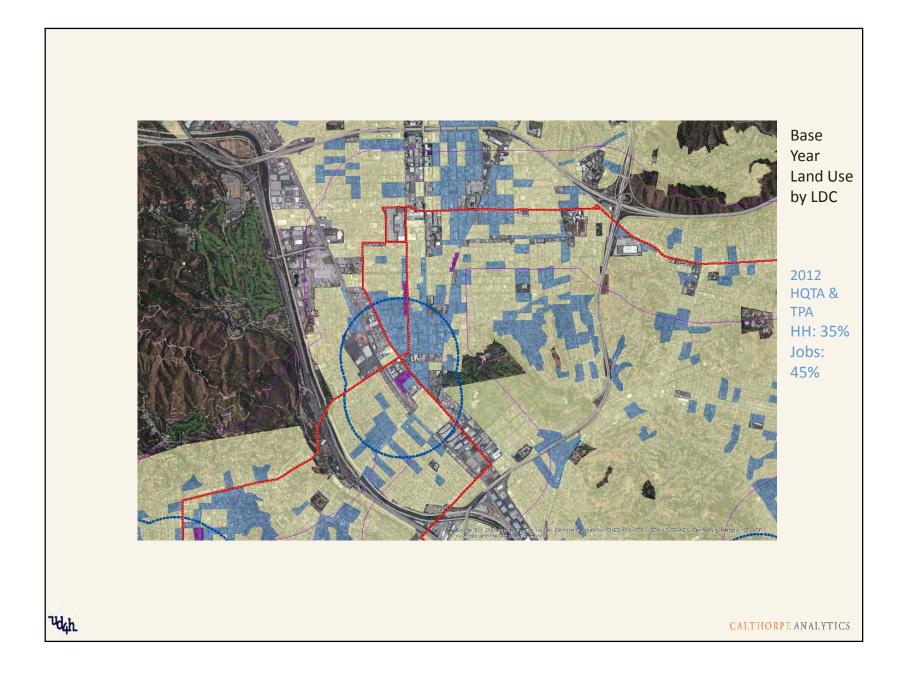


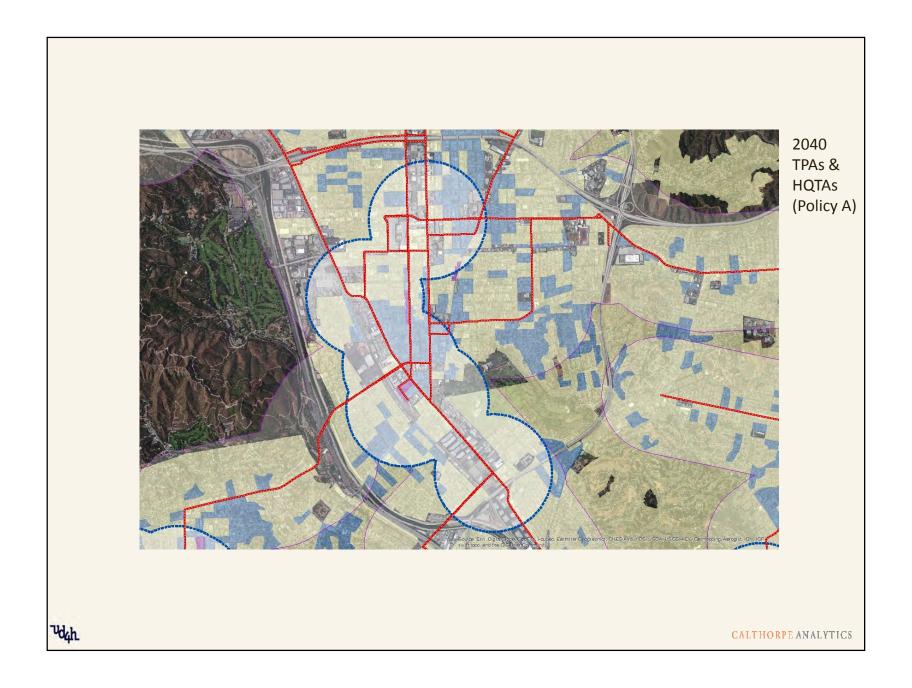

13 miles/day


15 min/day

Ud4h.

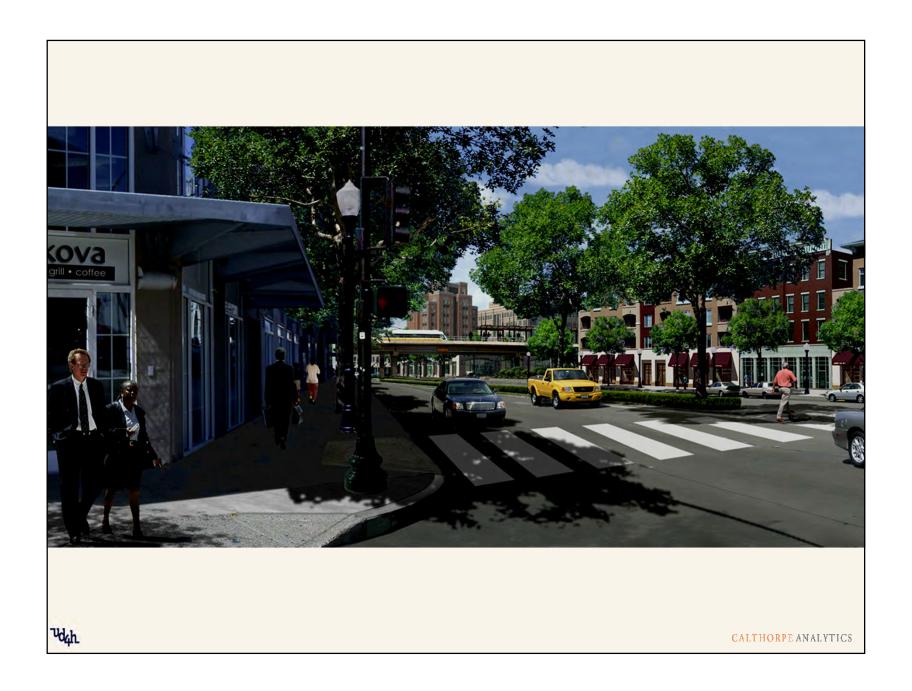






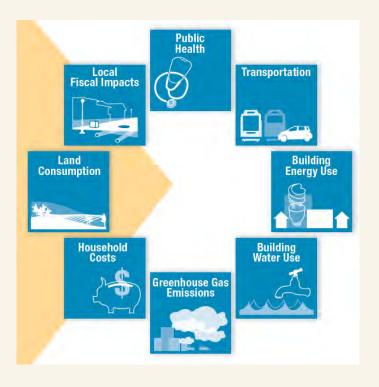
59

Land Development Category (LDC) Standard Suburban

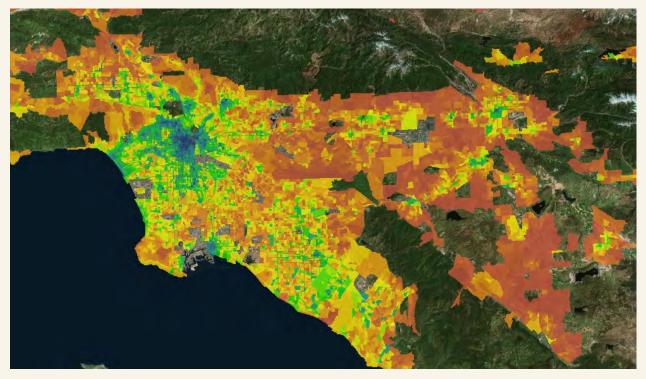



Ud4h.

Compact Walkable

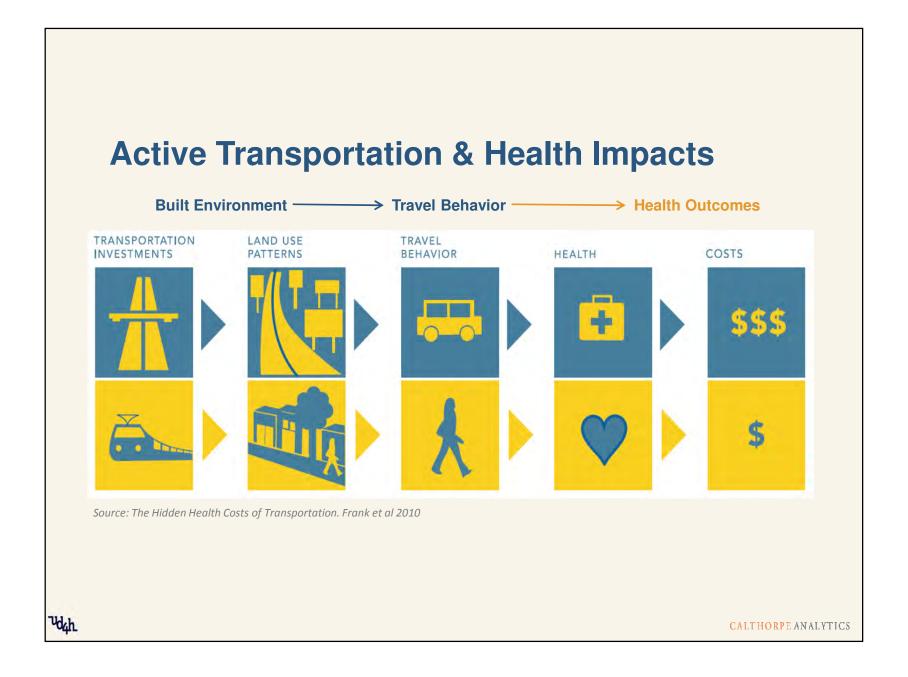


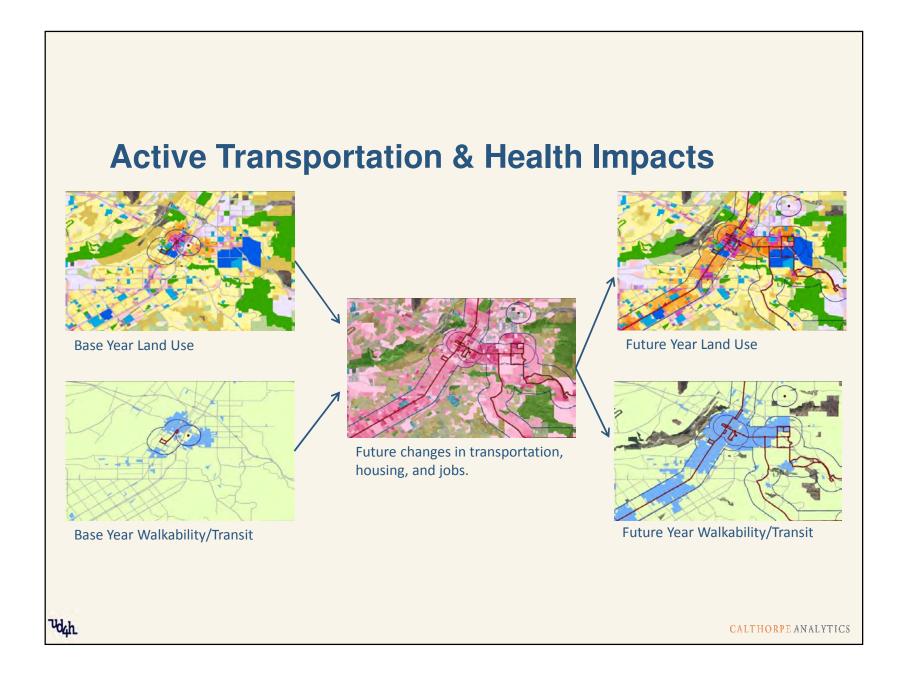
Ud4h.



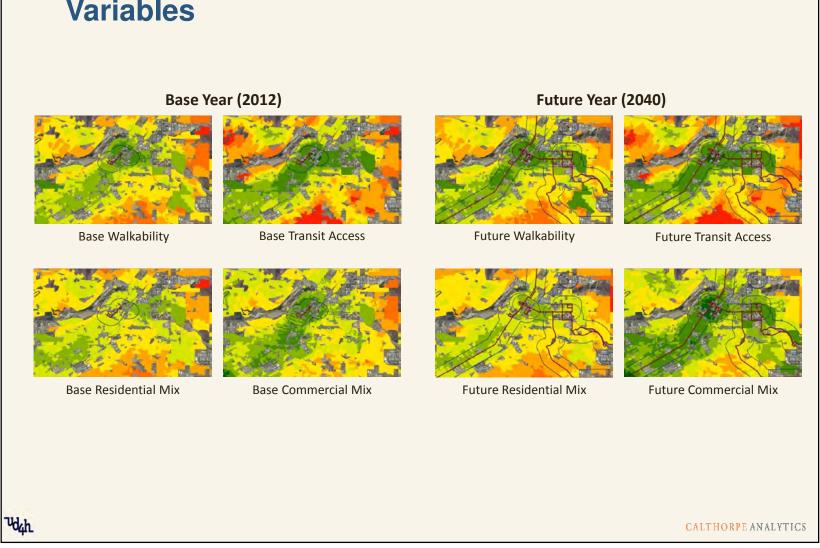
Multi-Metric Analysis = More Informed Decisions

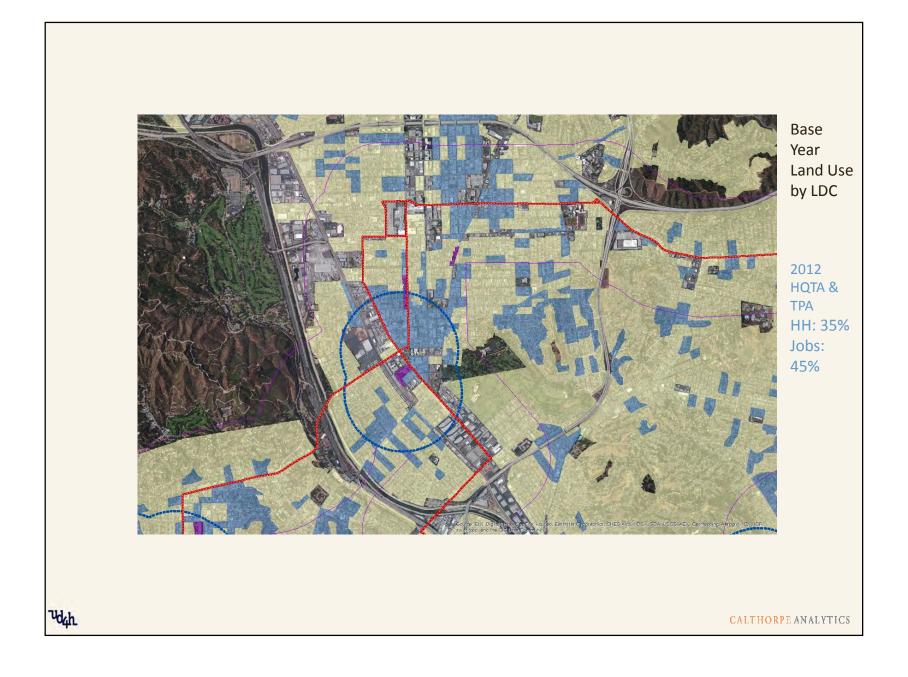
"Ud4h


Active Transportation & Health Impacts



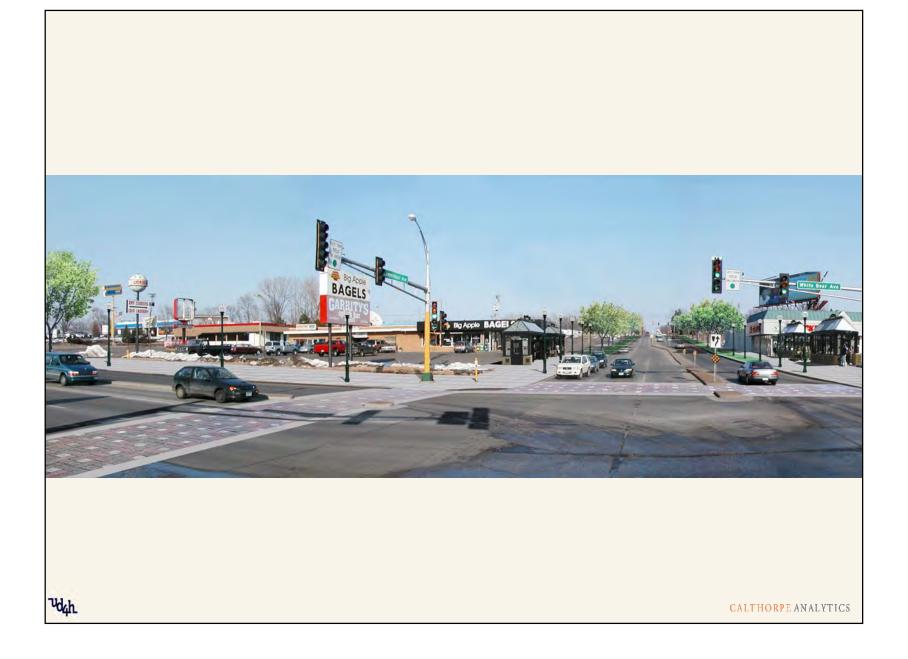
Base Year (2012) **Walking** (min/day)


CALTHORPE ANALYTICS


udah

Example Changes in Built Environment Variables

Active Transportation & Health Impacts


Adults: Ages 18-65	Base Year 2012	Net Change: (2012 – 2040)	
Recreation Physical Activity - Minutes Daily	13 min	+ 9%	
Walking - Minutes Daily	23 min	+ 10%	
Biking - Minutes Daily	3 min	+ 12%	
Auto - Minutes Daily	55 min	- 6%	
Obese Population (%)	21.5%	- 3%	
Poor Health Population (%)	24.1%	- 13%	
High Blood Pressure (%)	19.6%	- 1%	
Diabetes - Type 2 (%)	5.6%	- 11%	

¹d4h

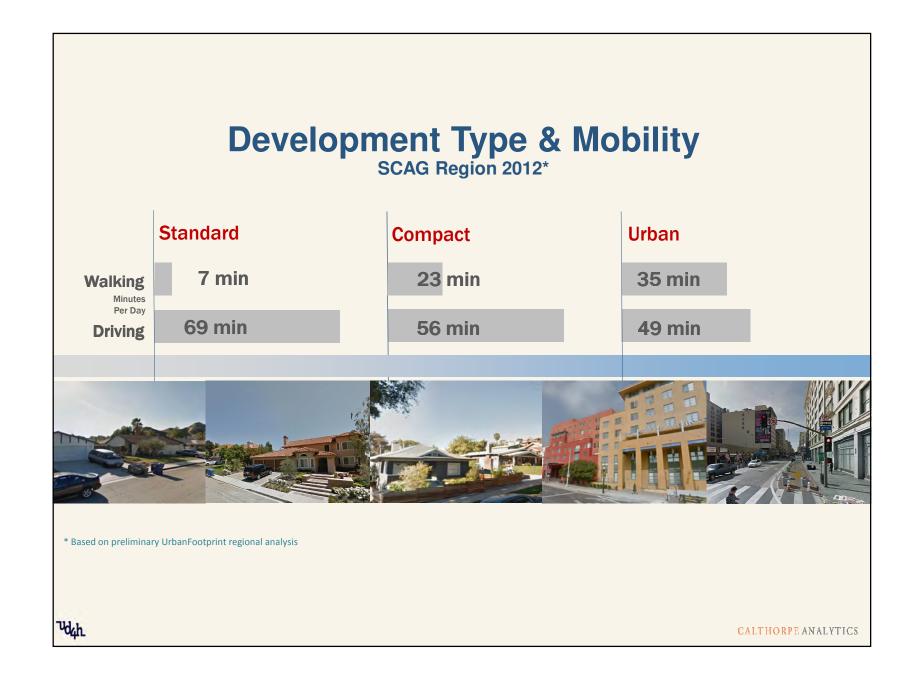
Land Development Category (LDC) Standard Suburban

Ud4h.

Compact Walkable

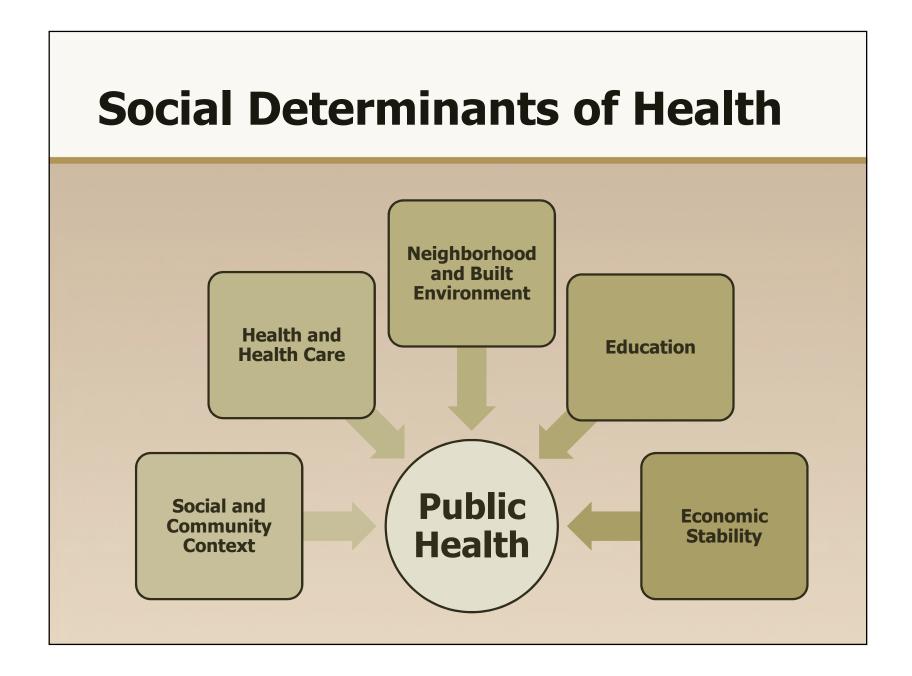
Ud4h.

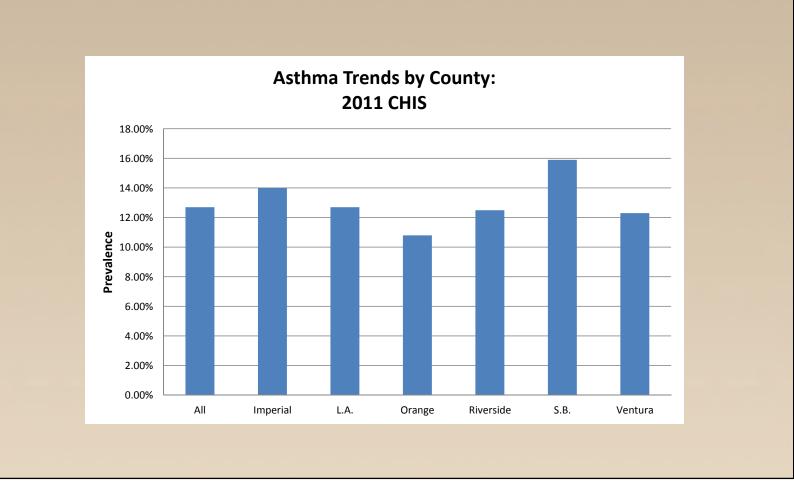
Land Development Category (LDC) Standard Suburban

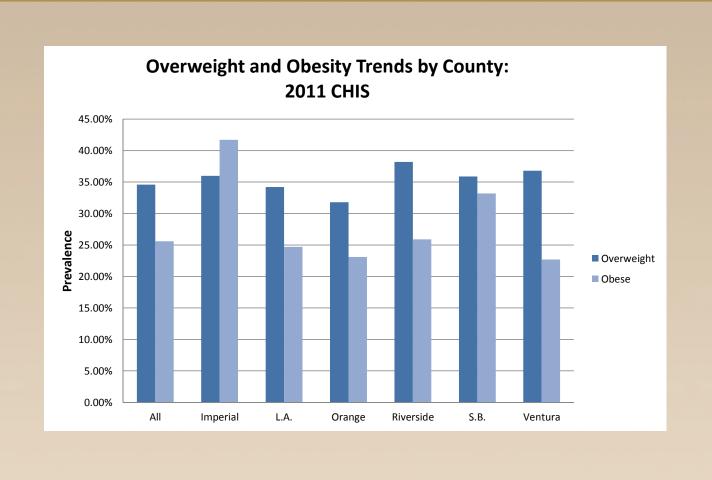

Ud4h.

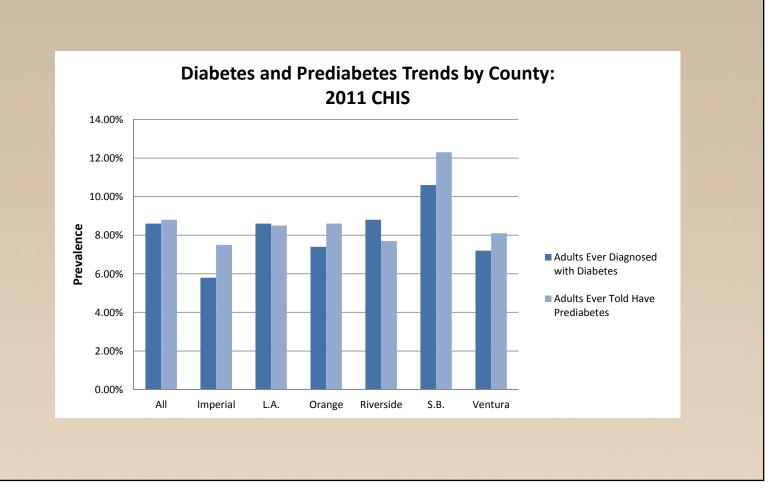
Compact Walkable

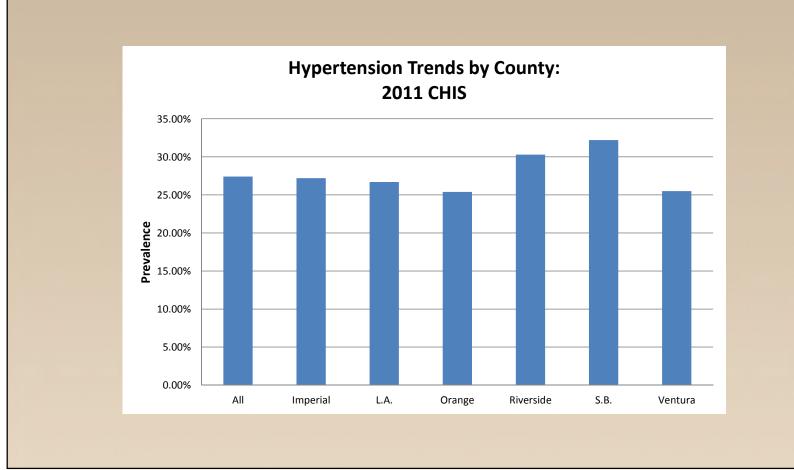
Ud4h.




Public Health Strategies and Actions for the 2016 RTP/SCS


July 7, 2015


Rye Baerg
Active Transportation & Special
Programs



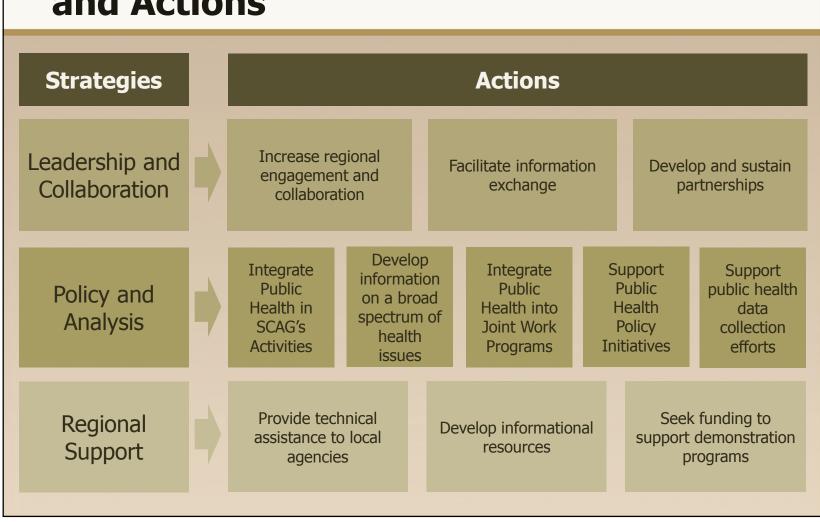
2016 RTP/SCS Health Appendix **Focus Areas** Physical Activity Transportation **Economic** Safety Wellbeing **Public Health** Appendix Climate Air Quality Resiliency Access

2016 RTP/SCS Goals

Focus Areas and Plan Goals							
RTP Goals	Access to Essential Destinations	Air Quality	Climate Resiliency	Economic Wellbeing	Physical Activity	Transportation Safety	
Align the plan investments and policies with improving regional economic development and competitiveness.	✓	✓		✓	√		
Maximize mobility and accessibility for all people and goods in the region.	✓			✓	<	✓	
Ensure travel safety and reliability for all people and goods in the region.	✓					✓	
Preserve and ensure a sustainable regional transportation system.		✓	✓	✓	✓		
Maximize the productivity of our transportation system.	✓			√			
Protect the environment and health of our residents by improving air quality and encouraging active transportation.		✓			<	√	
Actively encourage and create incentives for energy efficiency, where possible.		✓	✓	✓			
Encourage land use and growth patterns that facilitate transit and non-motorized transportation.	✓	✓	✓		✓		
Maximize the security of the regional transportation system through improved system monitoring, rapid recovery planning, and coordination with other security agencies.						✓	

Strategy and Action Development

- Public Health Subcommittee (2012-2013)
- Public Health Work Program (Fall 2014)
- Public Health Analysis Framework (Spring 2015)
- Public Health Working Group (Ongoing)
- Technical Working Group (Ongoing)
- Policy Committees (Ongoing)
- Stakeholder Meetings (Ongoing)


Benefits to the Region

- Improved interagency coordination
- Improved policy analysis due to expanded benefit modeling
- Regional readiness for future federal and state grants and other funding sources
- A sustainable and healthy region
- Improved regional economic outcomes from health care savings

Public Health Strategies and Actions

- Provide umbrella direction for Supporting Public Health in Regional Planning
- Specific modal public health strategies are included in the appendices for each mode

2016 RTP/SCS Public Health Strategies and Actions

Strategy 1: Leadership and Collaboration

Provide leadership in collaboration with the county transportation commissions, the county departments of public health, subregional partners, health industry leaders, local cities, and other local stakeholder groups to measure and improve public health outcomes by increasing awareness of the relationship between the social determinants of health and the built environment throughout the region.

Strategy 1: Actions

- A. Increase regional engagement and collaboration on the issue of public health, as related to the built environment and SCAG core planning functions, by raising awareness among policy leaders, agency staff, businesses, and the public.
- B. Facilitate information exchange and region-wide collaboration through SCAG Committees, health forums, and issue integration within other SCAG-led forums (active transportation, poverty, economy, etc.)
- C. Develop and sustain partnerships with governmental agencies, local non-profit organizations, private foundations, and other stakeholder groups to leverage existing activities and accelerate the adoption of policies that support public health considerations in day to day planning activities.

Strategy 2: Policy and Analysis

Develop, support, and implement **balanced regional policies** using a Health in All Policies approach to drive positive health outcomes for all residents of the SCAG region related to accessibility, air quality, climate resiliency, economic wellbeing, physical activity, and transportation safety.

Strategy 2: Actions

- **A. Integrate public health considerations** throughout SCAG's decision making processes and future planning activities.
- B. Collaborate with regional partners to **develop information on a broad spectrum of health issues** through data/statistics collection, modeling enhancements, and research.
- C. Collaborate with interested County Transportation Commissions to integrate public health related analysis and planning projects into the Joint Work Programs.
- D. Support local and regional agencies in the **application of health, equity and sustainability considerations** in transportation and land use policy efforts and identify policies that may create barriers to improving public health outcomes.
- **E. Support grants and funding opportunities** for cooperative multiagency/multi-municipality data systems, data sharing and resource and data pooling.

Strategy 3: Regional Support

Provide support to regional and local initiatives, agencies, and partners, including the sharing of data, statistics, benchmarks, and analysis tools, to help local agencies integrate public health considerations into the multimodal transportation, economic development, job creation and land use planning processes.

Strategy 3: Actions

- A. Provide technical assistance to local agencies to support implementation of the 2016 RTP/SCS, such as continued support through the Sustainability Program Grants for transportation, land-use, and sustainability planning focused on improved health outcomes.
- B. Develop resources such as fact sheets, documentation of best practices, policy templates, Toolbox Tuesday trainings, and website resources to support local jurisdictions interested in incorporating public health considerations into their planning processes.
- C. Seek funding to support local planning efforts and consider implementing regional demonstration programs aimed at integrating public health considerations into planning efforts and provide support and assistance to local agencies seeking grant funding for projects that align with the public health goals of the RTP/SCS.

Discussion and Questions

- Are there additional strategies and actions SCAG should include?
- How can SCAG better support local jurisdictions that are interested in integrating public health into your planning processes?

Public Comments

- Please provide public comments on the Strategies and Actions by July 31, 2015.
- Email them to Rye Baerg –
 baerg@scaq.ca.gov

Next Steps

- 2015 RTP/SCS
 - Draft RTP/SCS (November)
 - Draft PEIR (November)
 - Final 2016 RTP/SCS and PEIR to General Assembly (April 2016)
- Public Health Working Group
 - Next Meeting October/November

