
 

1 
 

 
 
 
 
 

Identification of High Crash-Risk Zones in Southern California 
 
 
 
 
 
 

Yongping Zhang, Ph.D., P.E. 
Assistant Professor, Department of Civil Engineering 

California State Polytechnic University, Pomona 
3801 W. Temple Ave., Pomona, CA 91768 

Tel: (909) 869-2632, Email: yongpingz@cpp.edu 
 

Tom Vo, M.S.C.E. 
Regional Planner/GIS Analyst 

Southern California Association of Governments 
818 West 7th Street, 12th Floor, Los Angeles, CA 90017 

Tel: (213) 236-1800, Email: Vo@scag.ca.gov 
 

Frank Wen, Ph.D. 
Manager of Research and Analysis 

818 West 7th Street, 12th Floor, Los Angeles, CA 90017 
Tel: (213) 236-1800, Email: Wen@scag.ca.gov 

 
Gurdiljot Singh Gill 

Graduate Student, Department of Civil Engineering 
ITE Student member, California State Polytechnic University, Pomona 

3801 W. Temple Ave., Pomona, CA 91768 
Tel: (909) 869-4312, Email: gurdiljotg@cpp.edu 

 
Wen Cheng, Ph.D., P.E., T.E., PTOE 

Associate Professor, Department of Civil Engineering 
ITE Student chapter faculty advisor, California State Polytechnic University, Pomona 

3801 W. Temple Ave., Pomona, CA 91768 
Tel: (909) 869-4312, Email: wcheng@cpp.edu 

 

mailto:yongpingz@cpp.edu
mailto:Vo@scag.ca.gov
mailto:Wen@scag.ca.gov
mailto:gurdiljotg@cpp.edu
mailto:wcheng@cpp.edu


 

2 
 

Abstract 
 

This study introduced traffic crash prediction module to Southern California Association of Governments 
(SCAG) ’s existing transportation model structure such that traffic crashes can be consistently predicted at 
the regional planning level using the existing transportation analysis zones (TAZs) as unit of analysis in 
the SCAG region. To this end, this study identified the influence of built environment on collisions by 
type (i.e. collisions between automobiles and between automobile and pedestrian or bicycle) in the SCAG 
region. To quantify the crash counts of various transportation modes at TAZ level, Multivariate 
crash frequency model was developed to jointly estimate the crash risk of different mode users. 
Then, three tests were introduced to evaluate the adopted Hot Spot Identification (HSID) 
method. All three test results show that the multivariate modeling method is superior to the commonly 
used observed count method. 

Keywords: TAZ; multivariate correlation; crash prediction; Bayesian; HSID 
 

1. Introduction 

During the year of 2014, 32,675 fatalities and more than 2,338,000 injuries occurred on the US roads. 
Road accidents were the leading cause of death among ages 16 through 24 in 2014 in the U.S. (1).  In 
Southern California Association of Governments (SCAG) region, each year about 1,500 fatalities and 
120,000 injuries occur due to traffic accidents. These fatalities and injuries reflect a significant proportion 
of healthy lives which could have been saved by the application of appropriate safety countermeasure 
treatments. The traffic management processes which address safety issues include network screening, 
problem diagnosis, countermeasure identification, and project prioritization.  

MAP–21 and FAST Act call for establishing performance measures and standards on traffic safety. 
FHWA is now requiring DOTs to work with MPOs to assess fatalities and serious injuries on all public 
roads and to set annual performance measures. The most current SCAG 2016-2040 Regional 
Transportation Plan/Sustainable Communities Strategies (RTP/SCS) was adopted in April 2016. In this 
regional planning document, traffic safety issue is considered as an important subject. The rate of fatal and 
injury collisions is briefly reviewed and presented as heat maps in the region (2). While SCAG intends to 
concentrate more on road safety and develop guidance to improve road safety, there is still a significant 
gap in modeling traffic accidents at the regional planning level. By quantifying the relationship between 
various traffic accidents and the built environment variables, modeling and forecasting traffic accidents 
can help identify hot spots of accident locations, allocate scarce resources to the most critical locations 
more accurately and efficiently, understand the impacts of safety countermeasures and initiate other useful 
planning research  studies such as environmental justice analysis. 

Over the past decades, SCAG has successfully developed and implemented state-of-the-art models to 
forecast both socioeconomic and transportation activities. The outcomes of these models can be utilized to 
forecast the traffic accident rates related to both motorized and non-motorized modes.  

In this context, this study introduced traffic crash prediction module to SCAG’s existing transportation 
model structure such that traffic crashes can be consistently predicted at the regional planning level using 
the existing transportation analysis zones (TAZs) as unit of analysis in the SCAG region. To this end, this 
study identified the influence of built environment on collisions by type (i.e. collisions between 
automobiles and between automobile and pedestrian or bicycle) and quantified the potential impacts of 
future built environments on safety in the SCAG region. It is intended to meet the SCAG’s Strategic Plan 
to develop, maintain and promote the utilization of state-of-the art models, information systems and 
communication technologies. (3) 
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2. Data 

 
Crashes which occurred in the SCAG region (i.e., Counties of Los Angeles, Orange, Ventura, Riverside, San 
Bernardino, and Imperial) in the period of 2012–2013 were analyzed for the study. In specific, 2012 data were 
used for detection of hot zone and modeling development, and 2013 data were employed for HSID 
performance evaluation. As demonstrated in previous research (Abdel-Aty et al., 2013), compared with other 
geographic units such as block groups and census tracts, TAZs have benefits of better homogeneity and easy 
integration into the transportation planning process. Therefore, TAZs were selected as the base units, and the 
crash data were aggregated at the TAZ-level. Overall, there are 11,267 tier-2 TAZs in the SCAG regional 
planning area. Three different transportation mode-related crashes were collected from SWITRS (California 
Statewide Integrated Traffic Records System) which include pedestrian, bicyclist, and motorized vehicle only 
crashes. Shapefiles of TAZ boundary and TAZ characteristics were provided by SCAG.  
 
The variables used for model development and their description are shown in Table 1. The numbers of various 
transportation mode-involved crashes were used as the dependent variables. DVMT was utilized as the 
exposure variable. The explanatory variables were the predictors commonly used in previous regional safety 
analyses which include socioeconomic, transportation-related, and environment-related factors, and so on.  

 
TABLE 1. Description of Variables 

 

     

Var Description
Cnty County
TAZ TAZ (tier2)
Acre TAZ area in acre
Density
Pop_den Population density (persons/acre)
HH_den Household density (hh/acre)
Emp_den Employment density (jobs/acre)
Ret_den Rtail job density
RetSer_den Retail+ Service (retail + FIRE + ArtsFood + Other Serv.) job density 
Diversity / Mixed Use of Land
Jobmix13 Job mix (13sectors); 1 = highest mex (jobs are equal for all sectors)
Jobmix9 Job mix (9 sectors)
Emix13 Job mix (13sectors); 1 = highest mex (jobs are equal for all sectors)
Emix9 Job mix (9 sectors)
EH_ratio Job/Household ratio
EP_ratio Job/Pop ratio
Built Environment / Access to Active Transportation & Transit
Int34_Den Intersection density (3- and 4- legs)
BKlnAcc Bike lane access (1=if a TAZ has bike lane)
Rail 1=at least one rail station in a TAZ
ExBus_D Stop density for Express Bus and BRT
HFLbus_D High-Frequency Bus Stop Density (local bus headway <= 20 mins)
TTbus_D Total Bus Stop Density
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3. Method 

3.1 Identifying the Collision Hotspots by Different Transportation Modes 
 
An efficient identification of hotspots in terms of transportation modes relies on an accurate 
Crash Prediction Model (i.e., crash frequency model). Hence, the research team quantified the crash counts 
of various transportation modes at TAZ level using the Multivariate crash frequency model, which can 
jointly estimate the crash risk of different mode users. The simultaneous modeling is essential given the 
unobserved heterogeneity shared by various transportation modes. Ignorance of such correlation structures 
has been illustrated to reduce the efficiency of the model due to lesser precise parameters (Cheng et al., 
2017a; Park and Lord, 2007). In comparison with the large number of univariate models dedicated to various 
mode users, very few studies have used the joint models to analyze the interaction between different modes. 
Given the crash count nature, this study will utilize the Multivariate Poisson-Lognormal Model (MVPLN). 
 

This model assumes that crash count of certain modal crash j at a given location i in time t (in years), 
yj

it, obeys Poisson distribution, while the corresponding observation specific error term εijt follows a 
multivariate normal distribution: 
                                                                 𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊|𝝀𝝀𝒊𝒊𝒊𝒊𝒊𝒊~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝝀𝝀𝒊𝒊𝒊𝒊𝒊𝒊)                                             (1) 
                                                                  ln�𝝀𝝀𝒊𝒊𝒊𝒊𝒊𝒊� = 𝑿𝑿𝒊𝒊𝒊𝒊𝒊𝒊′ 𝜷𝜷 + 𝜺𝜺𝒊𝒊𝒊𝒊𝒊𝒊                                               (2) 
                                                                   𝜺𝜺𝒊𝒊𝒊𝒊𝒊𝒊~𝑁𝑁𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝟎𝟎, ∑)                                                 (3) 

Where    𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊 = �
𝑦𝑦𝑖𝑖𝑖𝑖1

 𝑦𝑦𝑖𝑖𝑖𝑖2

 𝑦𝑦𝑖𝑖𝑖𝑖3
�     ,   𝝀𝝀𝒊𝒊𝒊𝒊𝒊𝒊 = �

𝜆𝜆𝑖𝑖𝑖𝑖1

𝜆𝜆𝑖𝑖𝑖𝑖2

𝜆𝜆𝑖𝑖𝑖𝑖3
�     ,    𝜺𝜺𝒊𝒊𝒊𝒊𝒊𝒊 = �

𝜀𝜀𝑖𝑖𝑖𝑖1

𝜀𝜀𝑖𝑖𝑖𝑖2

𝜀𝜀𝑖𝑖𝑖𝑖3
�     ,       ∑ = �

𝜎𝜎11 ⋯ 𝜎𝜎13
⋮ ⋱ ⋮
𝜎𝜎31 ⋯ 𝜎𝜎33

�    (4)                      

In above equations, X’ is the matrix of risk factors, β is the vector of model parameters, εj
it is the independent 

random effect which captures the extra-Poisson heterogeneity among locations. ∑ is called the covariance 
matrix. The diagonal element 𝝈𝝈𝒊𝒊𝒊𝒊 in the matrix represents the variance of 𝜺𝜺𝒊𝒊𝒊𝒊, where the off-diagonal 
elements represent the covariance of crash counts of different severities. The inverse of the covariance 
matrix represent the precision matrix and has the following distribution: 
                                                                     ∑−1~𝑊𝑊𝑃𝑃𝑃𝑃ℎ𝑁𝑁𝑁𝑁𝑎𝑎(𝐼𝐼, 𝐽𝐽)                                                 (5) 
Where I is the J x J identity matrix (Congdon, 2006), and J is the degree of freedom, J=3 herein representing 
3 crash outcomes. 
 

The Deviance Information Criterion (DIC) developed by Spiegelhalter et al. (2003) was employed to 
assess the complexity and fit of the models. The DIC is computed as the sum of the posterior mean deviance 
and estimated effective number of parameters: 
                                                                      𝐷𝐷𝐼𝐼𝐷𝐷 = 𝐷𝐷� + 𝑝𝑝𝐷𝐷                                                        (6) 
Where 𝐷𝐷� is the sum of the posterior mean deviance which measures how well the model fits the data; the 
smaller the𝐷𝐷�, the better the fit.  𝑝𝑝𝐷𝐷 represents the effective number of parameters. In general,  𝐷𝐷� will decrease 
as the number of parameters in a model increases. Therefore, the 𝑝𝑝𝐷𝐷  term is mainly used to compensate for 

Land Development Characteristics: TOD (HQTA / TPA)
Mlt_pct %  of households living in multiple unit
HQTA_pct % of TAZ area are in non-freeway HQTA (high-quality transit area)
TPA_pct % of TAZ area are in TPA
Additional Biking / Walking Related Built Environment Variable

BLdenIND

Bike Lane Density Indicator =
Sum (Bike Lane Denity/Distance to Home TAZ within 3 mile)  
Bike Lane Density for Each TAZ = ((Street15-25mpg)*1 + 
(Street35mpg)*2 + Bike Lane Class1 * 3 + Bike Lane Class2*4 Bike 
Lane Class3 *5) / Total TAZ area (excluding speed >60mph)

Blck_len
Estimated block length = LocalSt/Int34new (Total street length / 
number intersection) - highways are exluded

WalkAcc
Walk Accessibility (RS_den2/block_len)
 = (weighted retail + service density)/ estimated block length

Pct_Art
Percent of main arterial (45-55mph) of TAZ - higher % means more 
difficult to across street (also larger block to across steet); can be 
used with WalkAcc
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this effect by favoring models with a smaller number of parameters. This idea is analogous to other penalized 
fit criteria such as Akaike information criterion and Bayesian information criterion. 
 
The MVPLN model was implemented in freeware WinBUGS package (Spiegelhalter et al., 2003) which 
employs an MCMC algorithm for estimation of parameters. For the model calibration, two Markov chains 
were utilized to visually inspect trace plots of posterior estimates for convergence, which was further checked 
by using the Gelman-Rubin convergence statistic (Flegal et al., 2015). The following two subsections describe 
the modeling development and HSID results in order.  

3.1.1 Modeling Development Results 
 
In general, the larger the effective number of parameters is, the easier it is for the model to fit the data. To 
obtain a parsimonious model and avoid risk of overfitting, backward stepwise methods were employed in 
selecting covariates. Besides, a correlation matrix for the variables entered in the final models has been 
checked to avoid multicollinearity issues. Results of parameter estimation and associated uncertainty 
estimates of significant variables in the final models are presented in Table 2. It is known that the same 
significant variables are identified for all crash types. 
 
TABLE 2 Estimates of Regression Coefficients Obtained by Bayesian Multivariate Model 

Crash Types Variables Mean Standard Deviation 2.5% 97.5% 
Pedestrian Constant -1.692 0.0459 -1.777 -1.599 

Blck_Len -1.112 0.1105 -1.337 0.8978 
WalkAcc 0.0175 0.0018 0.014 0.021 
Pct_Art -0.9135 0.2817 -1.46 -0.3825 
Pop_den 0.0456 0.0025 0.0402 0.0498 
HH_den -0.0239 0.0062 -0.0341 -0.0104 
Emp_den 0.0046 8.026E-4 0.0030 0.0062 
VMT_total (unit: 
1000veh-miles) 

0.0462 0.0025 0.0411 0.0501 

Bike Constant -1.631 0.0457 -1.727 -1.544 
Blck_Len -0.7477 0.0822 -0.9152 -0.5854 
WalkAcc 0.017 0.0018 0.013 0.020 
Pct_Art -1.27 0.2767 -1.818 -0.7241 
Pop_den 0.1408 0.0027 0.0358 0.0455 
HH_den -0.0282 0.0070 -0.0409 -0.0131 
Emp_den 0.0054 8.02E-4 0.0037 0.0068 
VMT_total (unit: 
1000veh-miles) 

0.0446 0.0024 0.0397 0.0493 

Motorized Constant 0.6249 0.0204 0.5852 0.6630 
Blck_Len -0.3078 0.0253 -0.3555 -0.2578 
WalkAcc 0.011 0.0013 0.008 0.013 
Pct_Art 1.489 0.1193 1.254 1.733 
Pop_den 0.0194 0.0021 0.0146 0.0232 
HH_den -0.0150 0.0057 -0.0248 -4.223E-4 
Emp_den 0.0035 5.727E-4 0.0023 0.0046 
VMT_total (unit: 
1000veh-miles) 

0.0729 0.0013 0.0702 0.0751 

 𝐷𝐷� 79247.400 
 pD 10571.200 
 DIC 89818.600 

Note: Refer to Table 1 for detailed description of variables 
 
Similar to previous literature (Cheng et al., 2017b), the variance estimates of all three crash types are 
statistically significant at the 0.05 level of significance which indicate the presence of over-dispersion and 
strong correlation in all modal crashes. The covariance results for the model are shown in Table 3. It exhibits 
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that the correlations are statistically significant for heterogeneity error term among various crash types, 
demonstrating that the occurrence of various crash types is highly correlated. The highest correlation is 
observed between Bike and Pedestrian crashes (0.918), which might suggest that the bicyclists and 
pedestrians have closer behaviors than motorized vehicles.  
 
 
TABLE 3 The Estimate of the Covariance among Crash Types  

 Pedestrian  Bike Motorized Vehicle 
Pedestrian  0.940 (0.041)   
Bike 0.918 (0.027) 1.045 (0.034)  
Motorized Vehicle 0.714 (0.023) 0.742 (0.022) 0.849 (0.018) 

Notes: 1.The standard deviations are shown in parentheses. 
2. The statistically significant correlation coefficients are shown in bold.  
 
 

3.1.2 Hot Zones Identification Results 
 
Once the above model are developed jointly, the model output (i.e., estimated 𝝀𝝀𝒊𝒊jt ) can be used to rank the 
TAZ’s for identification of the hot zones in terms of each transportation mode. For illustration purpose, 
Tables 4-6 exhibit the top 30 TAZs in terms of Bayesian modeling-estimated crash counts for each 
transportation mode, respectively. 
 

TABLE 4. Illustration of Top 30 TAZs in terms of Bayesian-estimated Pedestrian Crash Counts 

Ranks County TAZ Observed Pedestrian 
Crash Counts 

Bayesian-estimated 
Pedestrian  Crash Counts 

1 37 21950100 15 16.73 
2 37 20953200 14 10.1 
3 37 21119100 17 10.08 
4 37 20953100 12 8.928 
5 37 21555300 7 8.554 
6 37 21055200 9 8.523 
7 37 20937100 9 7.941 
8 59 32955100 9 6.898 
9 37 20989100 9 6.87 

10 37 21393100 9 6.678 
11 37 21024100 7 6.338 
12 37 21062100 5 6.072 
13 37 21107200 8 6.015 
14 37 21918100 10 6.013 
15 37 21937100 5 5.979 
16 37 20899300 12 5.958 
17 37 21544300 9 5.892 
18 59 32521200 7 5.871 
19 37 21953100 5 5.852 
20 37 21922100 5 5.769 
21 37 21002100 10 5.713 
22 37 21097100 7 5.705 
23 37 21017200 4 5.54 
24 37 21944100 4 5.431 
25 37 20749100 6 5.394 
26 59 32728200 5 5.371 
27 37 20996200 8 5.165 
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28 37 20531100 9 5.151 
29 37 20519100 8 5.086 
30 37 21022100 4 5.071 

 

TABLE 5. Illustration of Top 30 TAZ’s in terms of Bayesian-estimated Bike Crash Counts 

Ranks County TAZ Observed Pedestrian 
Crash Counts 

Bayesian-estimated 
Pedestrian  Crash Counts 

1 37 21944100 14 9.969 
2 59 32728200 14 9.399 
3 37 20953200 7 7.703 
4 37 21937100 10 7.251 
5 37 21055200 7 6.897 
6 37 20749100 10 6.781 
7 37 21950100 7 6.688 
8 37 21119100 6 6.592 
9 59 32521200 7 6.358 

10 37 21024100 8 6.213 
11 37 20534100 8 6.101 
12 59 32955100 6 6.078 
13 37 20748100 9 5.961 
14 37 21953100 7 5.869 
15 37 20772100 9 5.736 
16 37 21393100 6 5.691 
17 37 21544300 6 5.684 
18 37 20953100 4 5.595 
19 37 21062100 7 5.549 
20 59 32934100 8 5.479 
21 59 32932100 9 5.47 
22 59 32949100 7 5.44 
23 37 21052200 8 5.338 
24 59 32733100 7 5.329 
25 59 32736300 10 5.215 
26 59 32728100 10 5.164 
27 37 21939100 7 5.016 
28 37 20794100 7 4.999 
29 37 21929100 9 4.937 
30 37 21508100 8 4.917 

 
 
TABLE 6.  Illustration of Top 30 TAZ’s in terms of Bayesian-estimated Motorized Crash Counts 

Ranks County TAZ Observed Motorized 
Crash Counts 

Bayesian-estimated 
Motorized  Crash Counts 

1 37 20505100 232 242.8 
2 37 21957100 194 211.7 
3 37 21587200 104 103.2 
4 71 53860200 94 103.1 
5 37 21119100 90 95.98 
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6 65 43147200 93 95.1 
7 59 32889100 82 85.36 
8 59 32905100 77 83.35 
9 59 32943100 80 81.3 

10 37 20586100 65 65.18 
11 71 53885100 60 64.45 
12 37 20774100 56 63.91 
13 59 32987100 65 63.74 
14 37 20227100 60 62.37 
15 37 20395100 60 62.12 
16 59 32975400 57 55.97 
17 37 22022100 56 54.73 
18 37 22261200 55 54.65 
19 59 32878300 57 54.23 
20 37 22281100 52 54.14 
21 37 21714200 53 54.08 
22 37 22257100 51 53.23 
23 71 53884100 46 51.45 
24 37 21326100 49 50.57 
25 59 32585100 52 50.41 
26 37 20530300 53 49.68 
27 37 21142100 50 49.14 
28 37 20622100 48 49.1 
29 111 60088100 51 48.6 
30 59 32582100 50 48.58 

 

3.2 Evaluation of the Adopted Hot Spot Identification (HSID) Method 
 
Compared with the large number of studies focused on the development of various HSID methods, 
considerably less research has been dedicated to devising the evaluation criteria for comparing the 
performance of various methods. Cheng and Washington (2008) developed three unique evaluation criteria 
containing the Site Consistency Test (SCT), the Method Consistency Test (MCT), and the Total Rank 
Difference Test (TRDT), which were used in the study to evaluate the safety performance of hotspots 
identified by joint models (i.e., 𝝀𝝀𝒊𝒊jt) and observed crash counts (i.e. 𝒚𝒚𝒊𝒊jt), respectively. The following 
subsections present the succinct description of these tests. 
 

3.2.1Evaluation Criteria 
T1: Site Consistency Test  

The Site Consistency Test (T1) is used to measure the ability of a HSID method to consistently identify a 
site as high risk over subsequent observation periods. The test rests on the premise that a site identified as 
high risk during time period 1 should also reveal inferior safety performance in a subsequent time period 2, 
given that no significant changes have occurred at the site and given that the site is in fact high risk. T1 
simply requires a comparison of the sum of observed crashes occurring on nα  high risk sites during future 
time period i + 1 identified by method j (during time period i) to crashes occurring at high risk sites (in time 
period i + 1) identified by other ‘competing’ HSID methods. In equation form, this comparison is given as: 
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, ( ), 1 , , 11
n n

k Method j i i k Method j i
k n n k n n

T C C
α α

= + ≠ +
= − = −

= >∑ ∑                                 (7) 

where, n is the total number of sites being compared (e.g. crashes occurring on n=100 rural signalized 
intersections), C is the crash count for site ranked site k, α is the threshold of identified high risk sites (e.g. 

0.05α =  corresponds with top 5% of n sites identified as high-risk, and nα is the number of identified high 
risk sites), j = HSID method being compared (e.g. j = 1 could be the observed count method, j = 2 the 
multivariate modeling method), and i is observation period (e.g. i = 2012, i +1= 2013). In this comparison, 
the method j that identifies sites in a future period with the highest crash count is the most consistent method 
for identifying underlying safety problems.  

T2: Method Consistency Test 

In the Site Consistency Test previously discussed, crash counts in Period 2 are used as a benchmark to 
compare different HSID methods. The underlying assumption is that the identification performance of the 
HSID methods is revealed through the safety performance of the corresponding identified hot spots. The 
Method Consistency Test, in contrast, is designed to evaluate a method’s performance by measuring the 
number of the same hot spots identified in both periods. Inasmuch as the two periods are close in time, it is 
assumed that road sections are in the same or similar underlying operational state (similar traffic volumes, 
driver populations, geometric designs, weather fluctuations, etc.) and their expected safety performance 
remains virtually unaltered over the two periods. Under this homogeneity assumption, a good HSID method 
will identify the same set of hot spots across two different periods. The greater the number of hot spots that 
are identified in both periods the more reliable and consistent is the performance of HSID method.  

 Analytically, test T2 is simply the intersection of ranked sites k identified in subsequent time periods 
i and i + 1 that are high risk, or: 

{ } { }1 1, , 1
2 , ,....., , ,.....,j n n n n n n n n n nj i j iT k k k k k kα α α α− − + − − + +

= ∩ ,                      (8) 

where, terms are as defined previously. Note that only sites identified in the top threshold α are 
compared.  

In this test, the intersection of sites identified as high risk in two subsequent periods is compared 
over methods j=1 to J, and the method yielding the largest intersection of sites is said to be the most 
consistent.  

T3: Total Rank Differences Test 

In the Method Consistency Test (T2), the number of consistently identified hot spots common to both 
periods is used to measure a method’s reliability. The Total Rank Differences Test, building on T2, takes 
into account the rankings of safety performances of road sections in the two periods. To illustrate, consider a 
group of 100 road sections, among them there is one site whose AR ranks 1st in Period 1 and ranks 10th in 
Period 2. If the top 10 sites are identified as hot spots, then the AR method has identified a site in both 
periods even though the rankings have changed between periods. The Total Rank Differences Test, T3, is 
proposed to account for the rankings. The test is conducted by calculating the sum of total rank differences 
of the hazardous road sections identified across the two periods. The smaller is the total rank difference, the 
more consistent is the HSID method on this test—reflecting consistent ranking of sites across periods. As for 
the prior tests, this test is based on the assumption that no safety treatments are implemented on the road 
sections and the underlying safety of the road section during the two periods is constant. Hence, it is of great 
importance to ensure all the data outliers (i.e., road sections that are treated during Period 2) have been 
identified and removed when conducting this test.   

 In equation form, this test statistic is given as: 

𝑻𝑻𝑻𝑻𝒊𝒊 = ∑ |𝑹𝑹�𝒌𝒌𝒊𝒊,𝒊𝒊� − 𝑹𝑹�𝒌𝒌𝒊𝒊,𝒊𝒊+𝟏𝟏�|𝒏𝒏
𝒌𝒌=𝒏𝒏−𝒏𝒏𝒏𝒏                                                                                      (9) 

where R is the rank of site k in period i for method j. Note that the difference in ranks is summed 
over all identified sites for threshold level α for period i.  
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3.2.2 Test Results 

The three tests described previously (T1 through T3) were used to assess the relative performance of two 
HSID methods, the commonly used observed count method (Method 1) and the multivariate modeling 
method (Method 2, as described in the Methodology Section).  

The evaluation follows the following procedure, which closely mimics how reactive safety management 
programs are conducted in practice: 

1. For each HSID method, all TAZ’s are sorted in descending order of estimated safety in terms of each of 
the three transportation modes (noting that the four HSID methods rank sites according to different 
criteria).  

2. TAZs with the highest rankings are flagged as sites with promise (in practice these sites will be further 
scrutinized). Typically, a threshold is assigned according to safety funds available for improvement, 
such as the top 10% of zones. In this evaluation, both the top 10% and 5% zones are used as 
experimental values.  

T1: Site Consistency Test Results 
Using test T1 it is shown in Table 7 that the Multivariate Modeling Method outperforms the other one in 
identifying both top 5% and 10% hot spots (zones) with consistently higher average counts in Period 2 (Yr 
2013). For example, under Method 1, all identified top 5% zones based on 2012 crash data reported 1263 
pedestrian-related crash counts, while the corresponding counts are 1405 in the case of Method 2. Such 
phenomenon indicates Method 2 is more efficient in screening out the zones where more crashes would 
occur in the future period should no major changes happen in these zones.    
 
 
TABLE 7: SCT Results for various transportation modes and HSID methods 

 Method 1: Observed Counts Method 2: Multivariate Modeling 
 Top 5% Top 10% Top 5% Top 10% 
Pedestrian 1263 1962 1405 2308 
Bicyclist 1240 2014 1421 2260 
Motorized Drivers 15095 23364 15137 23569 
Average 5866 9113 5988 9379 

Note: the values in the table represent the total accident counts of all identified zones (top 5% or 10%) in the 
after Period (Year 2013).  
 

T2: The Method Consistency Test Results 
Table 8 shows the number of commonly identified hot zones by alternate HSID methods over the two 
periods. Method 2 is superior in this test by identifying the larger number of the same hot zones in both 
cases of α  = 0.90 and α  = 0.95. In other words, Method 2 identified more zones in 2012 that were also 
identified as hot zones in 2013. For instance, out of the top 5% zones (11267*5%=563) in terms of bicyclist-
related crashes, there are only 195 zones were identified as hot zones based on both Before and After period 
under Method 1. Nonetheless, the common zones for the same situation under Method 2 are 291. This fact 
illustrates the consistency of the method in detecting the hot zones. 
 
Table 8: MCT Results for various transportation modes and HSID methods 

 Method 1: Observed Counts Method 2: Multivariate Modeling 
 Top 5% Top 10% Top 5% Top 10% 
Pedestrian 195 (34.6%) 495 (43.9%) 322 (57.2%) 727 (64.5%) 
Bicyclist 191 (33.9%) 522 (46.3%) 291 (51.7%) 683 (60.6%) 
Motorized Drivers 382 (67.9%) 798 (70.8%) 404 (71.8%) 823 (73.0%) 
Average 256 (45.4%) 605 (53.7%) 339 (60.2%) 744 (66.0%) 

Note: The number represents zones identified by methods in both periods, the percent shown in parenthesis 
stands for the percentage of consistent hot zones, or the percentage of hot zones identified in 2012 that were 
also identified in 2013. 
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Also shown in Table 8 are differences between percentages (shown in the parenthesis) for the three 
transportation modes and associated average values. There is a consistent drop in percentages as threshold 
values drop. The explanation is that the top zones suffer from greater random fluctuations in crashes, and 
thus the higher the threshold the larger are the random fluctuations and the likelihood of not being identified 
in a prior year.  

T3: Total Rank Differences (TRD) Test Results 
Table 9 illustrates that Method 2 is vastly superior using the Total Rank Differences Test. In both the cases 
of α  = 0.90 and α  = 0.95, Method 2 has significantly smaller summed ranked differences; by about 400%, 
300%, and 10% compared to the Method 1, with respect to Pedestrian, Bicyclist, and motorized drivers, 
respectively. This result suggests that the multivariate modeling method is the better HSID method for 
ranking zones consistently from period to period. 
 
Table 9: TRD Results for various transportation modes and HSID methods 

 Method 1: Observed Counts Method 2: Multivariate Modeling 
 Top 5% Top 10% Top 5% Top 10% 
Pedestrian 1194881 2861364 294469 831137 
Bicyclist 1209692 2803658 342220 964315 
Motorized Drivers 157903 649739 135216 539460 
Average 854159 2104920 257302 778304 

 
In conclusion, all of the three test results show that Method 2 is superior to Method 1. 
 
 
4. Conclusions 

To consistently predict traffic crashes in the SCAG region based on SCAG’s existing land use model and 
travel demand models, transportation analysis zones (TAZs) are deployed as unit of analysis in developing 
traffic crash prediction module to supplement SCAG’s existing transportation model structure. To this end, 
this study identified the influence of built environment on collisions by type (i.e. collisions between 
automobiles and between automobile and pedestrian or bicycle) in the SCAG region. To quantify the crash 
counts of various transportation modes at TAZ level, Multivariate crash frequency model was developed to 
jointly estimate the crash risk of different mode users. The simultaneous modeling is essential given the 
unobserved heterogeneity shared by various transportation modes. Ignorance of such correlation structures 
has been illustrated to reduce the efficiency of the model due to lesser precise parameters. 

Given the crash count nature, this study utilized the Multivariate Poisson-Lognormal Model (MVPLN). 
Since Bayesian estimation method has shown significant advantages over traditional maximum likelihood 
estimation method, the MVPLN model was implemented in freeware WinBUGS which employs an MCMC 
algorithm for estimation of parameters. For the model calibration, two Markov chains were utilized to 
visually inspect trace plots of posterior estimates for convergence. Only year 2012 crash data were used to 
estimate the model, leaving year 2013 data for model evaluation. After the crash prediction model was 
created, three tests were introduced to evaluate the adopted Hot Spot Identification (HSID) method. All three 
test results show that the multivariate modeling method is superior to the commonly used observed count 
method. 

Since all explanatory variables can be easily obtained from SCAG’s future year travel demand models, future 
year high crash-risk zones can be identified using crash prediction model. 
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