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Abstract 1 

Compared with a large amount of research using different ways of addressing serial 2 

correlations among crash data, there is relatively little research dedicated to the evaluation 3 

of the different temporal treatments on modeling performance. This study proposed two 4 

new methods which combined the strengths of linear trend and time-varying coefficients 5 

with the autoregressive process and compared their performance with seven other temporal 6 

models used in the past. Nine years of crash data and other covariates associated with 7 

traffic analysis zones were used. The Bayesian hierarchical approach was employed to 8 

account for the structural heterogeneities. 9 

The nine models generated similar number of statistically significant variables and close 10 

variable coefficients. However, the modelling performance was different based on a set of 11 

evaluation criteria. For prediction accuracy, the model which accounts only for the 12 

autoregressive effect illustrated the superior performance in terms of both cross validation 13 

and typical assessment based on the same data used to develop models. Nonetheless, if the 14 

penalized criterion (Deviance Information Criterion) was used, both of the newly proposed 15 

models outperformed other competing models, which indicates their capability to yield 16 

similar prediction accuracy with the relatively smaller effective number of parameters. 17 

Such fact suggests that more models which combine various temporal treatments are worth 18 

further exploration. Finally, the correlations were also observed among the various 19 

modeling assessment criteria.  20 

Keywords: Serial Correlations; Time-Varying Coefficients; Autoregressive Process; 21 

Bayesian Hierarchical Approach; Structural Heterogeneities. 22 

 23 

 24 

 25 
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1. Introduction 1 

Crash prediction models have been used in research and practice for determination of influential 2 

factors, planning purposes or site ranking. Models of varying complexity have been employed, 3 

ranging from very basic to sophisticated. Some studies developed univariate models by focusing 4 

on a particular crash outcome or total crashes (Ulfarsson and Shankar 2003; Lord et al. 2005; 5 

Kim et al. 2006). These models operated on the assumption that crash outcomes are independent, 6 

while they were revealed to be multivariate due to sharing of unaccounted factors (Bijleveld 7 

2005; Park and Lord 2007). Congdon (2001) observed that ignorance of such correlation 8 

structures may reduce the efficiency of the model due to lesser precise parameters.  9 

Lately, more advanced models have been proposed to incorporate the correlation 10 

structures to account for the unobserved heterogeneity in crash data (MacNab 2004; Miaou and 11 

Lord 2003; Aguero-Valverde and Jovanis 2006; Quddus 2008; Lord and Mannering 2010). 12 

Significant correlations were observed by some research studies which jointly considered 13 

different crash severity levels (Tunaru 2002; Ladron de Guevara et al. 2004; Miaou and Song 14 

2005; Song et al. 2006; Ma and Kockelman 2006). Some research studies (Ma et al. 2008; 15 

Aguero-Valverde and Jovanis 2009) noted that more precise estimates were obtained for model 16 

parameters with the inclusion of correlations in multivariate crash counts. Apart from the 17 

correlations of severity levels, some studies utilized spatial random effects to explore the spatial 18 

correlations between the crash sites at different area levels like intersections (Wang and Abdel-19 

Aty 2006; Mitra 2009), segments (Aguero-Valverde and Jovanis 2008), corridors (Abdel-Aty et 20 

al. 2006; Guo et al. 2009), Census tracts (Narayanamoorthy et al. 2013), Traffic Analysis Zones 21 

(Washington et al. 2010; Xu and Huang 2015), counties (Miaou et al. 2003; Huang et al. 2010), 22 

and so on. The studies focused on simultaneously modelling crash types (Song et al. 2006; 23 
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Aguero-Valverde et al. 2016; Cheng et al. 2017) observed that inclusion of correlated spatial 1 

random effects in the model significantly increased the fitness of model with the crash data and 2 

superior site ranking performance.  3 

Another dimension of studies investigated the inclusion of serial correlations to benefit 4 

from the time-dependent factors which were not incorporated in the previous models (Andrey 5 

and Yagar 1993; Hay and Pettitt 2001; Wang et al. 2013). Wang et al. (2006) did a temporal 6 

analysis of rear-end collisions at intersections by utilizing generalized estimating equations with 7 

a negative binomial link function. The three-year longitudinal data for 208 signalized 8 

intersections served for the development of four models with different correlation structures: 9 

independent, exchangeable, autoregressive (AR), and unstructured. The autoregressive structure 10 

was observed to have best goodness-of-fit and an estimated correlation of 0.4454 for each 11 

successive two years. Huang et al. (2009) employed the same AR model with a time step of one 12 

year (lag-1), along with five other models, for empirical evaluation of identification of hotspots 13 

by different approaches. The study conducted on intersection crash data revealed that the models 14 

based on Full Bayesian (FB) hierarchical approach significantly outperformed others in hotspot 15 

identification. Based on the same approach, the AR-1 model was observed to have the best fit 16 

with the crash rate-related parameters, as assessed by three goodness-of-fit criteria: DIC 17 

(Deviance Information Criterion), MAD (mean absolute deviance), and MSPE (mean-squared 18 

predictive error). Aguero-Valverde (2013) did a segment-level comparative study based on the 19 

precision of crash frequency estimates of different random effects models. Two of the models 20 

considered for comparison were Fixed-over-time and independent-over-time random effects. The 21 

results established that by fixing the random effects over time, the model parameters were able to 22 

‘pool strength’ from the neighboring years as the model fit and precision of estimates 23 
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significantly increased. The evaluation of models also revealed that the concerned model 1 

performed consistently better at site ranking due to the notable reduction in standard errors of 2 

estimates. Jiang et al. (2014) used the site-specific fixed-over-time random effect to incorporate 3 

temporal correlations into a Poisson lognormal model for highway network screening. The 4 

comparison results with other competing models revealed that the inclusion of these correlations 5 

significantly improved the capability of the model to fit the crash data, which was in line with the 6 

observations made by a previous study (Aguero-Valverde, 2013). Moreover, the model exhibited 7 

a consistently superior performance for identification of hotspots. El-Basyouny and Kwon (2012) 8 

analyzed the yearly trend and random variation of parameters using yearly time period while 9 

investigating the effect of weather and time on crash types. Four multivariate Poisson lognormal 10 

models were developed using the Full Bayesian framework: with and without linear time trend, 11 

yearly varying intercept, and yearly varying coefficients. The results confirmed the superiority of 12 

the model with varying coefficients to possess the best fit based on DIC. This study used day-of-13 

week as a proxy variable due to the unavailability of traffic exposure, and it was recommended 14 

to investigate different datasets with traffic exposure with the temporal models to confirm the 15 

findings. Along with a linear time trend, an ecological study by Earnest et al. (2007) used a 16 

Conditional Autoregressive (CAR) model to evaluate different neighbourhood weight matrices 17 

which incorporated quadratic time trend as well.  18 

Compared with a large number of research studies using various temporal correlations 19 

among crash data, there is little research dedicated to the evaluation of the different temporal 20 

treatments on modelling performance. To add to the literature the much-needed research, the 21 

present study first compared seven alternate temporal models implemented in the past studies 22 

with varying complexity of random effects: (I) independent-over-time; (II) fixed-over-time; (III) 23 
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linear time trend; (IV) quadratic time trend; (V) yearly varying intercept; (VI) yearly varying 1 

coefficients; and (VII) Autoregressive-1 (AR-1). In addition, this study also proposed two new 2 

methods which combine the strengths of previous models: the linear trend and AR-1, and the 3 

time-varying coefficients and AR-1. To the best knowledge of authors, such combination is first 4 

proposed in the traffic safety field, even though the similar combination of AR and time trend 5 

can be found in the current practice, such as the STEPAR (stepwise autoregressive method) 6 

specification provided in SAS/STAT 9.2 software package (Jones and Huddleston, 2009). It is 7 

important to note that, in addition to AR-1, there are a large number of models involving 8 

autoregressive error process (Miaou and Song 2005), such as higher order AR model AR(p), 9 

autoregressive–moving-average (ARMA), Integer valued autoregressive (INAR), Autoregressive 10 

Conditional Heteroscedastic (ARCH), and Generalized Autoregressive Conditional 11 

Heteroscedastic (GARCH), and so on. This research chose AR-1, which has often been used in 12 

traffic safety research, as a representative of the large body of AR-involved models. 13 

     As this study is primarily focused on assessment of temporal treatments, hence a same 14 

distance-based weight matrix was incorporated in all models to account for the possible spatial 15 

correlations among crash sites to ascertain that the differences observed in results are mostly 16 

influenced by the temporal random effects. However, the time and space interactions were not 17 

included which might blur the comparison of alternative temporal treatments. All models under 18 

investigation were evaluated based on the goodness-of-fit and accuracy of crash estimation. 19 

Firstly, DIC was used as a measure for assessment of the fitness of model estimates with the 20 

actual crash data. It is also utilized for determination of model complexity, or, number of 21 

effective parameters that are used for model development. Secondly, the models are evaluated 22 

based on the predictive density calculated by the leave-one-out cross-validation of LPML (log 23 
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pseudo marginal likelihood). Third, other prediction criteria including MAD (mean absolute 1 

deviation), RMSE (root mean square error), and chi-square RSS (Residual Sum of Squares) were 2 

calculated to quantify the discrepancy in the crash estimation and observed crashes. Finally, a 3 

simple correlation analysis was done among all abovementioned assessment criteria. 4 

 The remainder of the paper first describes the development of nine models under the Full 5 

Bayesian framework, along with the convergence checks used. Then, the criteria for model 6 

fitness, validation, and empirical evaluation are described, followed by a discussion of results. 7 

Conclusions and recommendations follow. 8 

2. Methodology 9 

2.1 Model Development 10 

This study used the Full Bayesian (FB) hierarchical approach to account for the structural 11 

heterogeneities, such as temporal and spatial, for development of crash frequency models. 12 

Several recent studies have revealed the capability of hierarchical modelling technique to better 13 

fit the crash count data by incorporating such heterogeneities (Song et al. 2006; MacNab 2003; 14 

Huang et al. 2008a; Huang et al. 2008b). 15 

The model formulation is presented in order of complexity, from the independent-over-16 

time random effects to more sophisticated proposed model, which is a combination of AR-1 and 17 

time-varying coefficient. The models under investigations are specified as below: 18 

Model 1: Independent-over-time random effects 19 

At the first step of the hierarchical approach, the crash count is modeled as the Poisson process: 20 
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 	���~���		�
	���� (1) 

Where, ��� is the observed crash count at zone i in time period t and ��� is the mean expected 1 

crash count for site i in time period t.  2 

The expected crash count is modeled as a function of covariates and random effects, as 3 

shown in the equation: 4 

 log���� = 	�� + ���� + ∅� + ��� (2) 

Where, �� is the vector of intercept, �� is the vector of independent coefficients, �� is the vector 5 

of independent covariates, ∅�is the spatially structured random effect, and ��� is the error term for 6 

TAZ i at time t. Since the main focus of this study was to compare the influence of time on the 7 

crash count, hence the spatial random effects term (∅�) was separately introduced in the model 8 

(split from random effect) to avoid blurring the time comparison. The spatial correlation was 9 

accommodated by introducing the CAR (conditional autoregressive) prior for the spatial random 10 

effects (Lawson et al., 2003).  A plethora of spatial weight matrices have been employed in 11 

safety research (Gill et al., 2017; Jonathan et al., 2016). The present study calculated the 12 

distance-based weight matrix where the reciprocal of the distance between two TAZs is 13 

considered.   14 

At the second step, the coefficients of covariates (��) are modeled using non-informative 15 

Normal priors (i.e. �� ∼ Normal (0, 10
6
)) while the error term and associated variance are 16 

modelled with normal and gamma distributions, respectively (Bernardinelli et al. 1995): 17 
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 ���~
�����	�0,  ��! 		 (3) 

  ��~"����	�0.001,0.001 (4) 

Model 2: Fixed-over-time random effects 1 

According to Equation 3, the error term ɛit varies across road sites and over time. However, it can 2 

be argued that the same zone shares identical unobserved features over the years. Hence, an 3 

identical site-specific random effect across years is added taking the following form: 4 

 log���� = 	�� + ���� + ∅� + �� (5) 

 ��~
�����	�0,  �!		 (6) 

Model 3: Linear time trend 5 

In this model, a linear time trend is assumed by employing time as a covariate  6 

 log���� = 	�� + ���� + ��%&' + ∅� + �� (7) 

Where ��%& is the scalar parameter for linear yearly trend and assigned with non-informative 7 

Normal prior (i.e., �� ∼ Normal (0, 10
6
)) 8 

Model 4: Linear as well as quadratic time trend 9 

To explore a more complex trend of time, a quadratic temporal random effect term is also added 10 

(Cheng et al., 2017b): 11 
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 log���� = 	�� + ���� + ��%&' + ��%!'! + ∅� + �� (8) 

Where ��%! is the parameter for quadratic yearly trend and assigned with the same non-1 

informative Normal prior as ��%&. 2 

Model 5: Varying intercept 3 

This model has an intercept which varies with the yearly time period for every site 4 

 log���� = 	��� + ���� + ∅� + �� (9) 

Where ��� is the vector of yearly-varying intercept. Each intercept was assigned with a non-5 

informative Normal prior.  6 

Model 6: Varying coefficients 7 

This model includes the yearly varying coefficients for the intercept as well as covariates.  8 

 log���� = 	��� + ������ + ∅� + �� (10) 

Where, ��� is the matrix of time-varying coefficients of independent covariates. Each element of 9 

the matrix was assigned with a non-informative Normal prior (i.e. ��� ∼ Normal (0, 10
6
)).  10 

Model 7: Autoregressive-1 (AR-1) 11 

This model accounts for the autoregressive safety effect by specifying the distribution of ��� as a 12 

lag-1 dependence on errors, where lag-1 means that the time is varying yearly. It incorporates the 13 

weighted sum of the past one year of values together with a random term.  We chose AR-1 based 14 
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on the assumptions of stationarity restriction.  1 

 log���� = 	�� + ���� + ∅� + ��� (11) 

The weighted sum is fixed, and the random terms change at every time step following the same 2 

distribution, which means this model is homoscedastic. The distributions are given by:                                                               3 

 ���~
����� (0,  ��!�1 − *!			
	+ (12) 

    
             ���~
�����,*��,�-&,  ��!.      for t >1 

(13) 

Where * is the autocorrelation coefficient with the range of -1< * < 1 (Jung, Kukuk, and 4 

Liesenfeld, 2006). If * is close to 0, then the random process looks like white noise, but as |*| 5 

approaches 1, the value of present year gets a larger contribution from the value of previous year 6 

relative to the noise. The coefficient * was assigned with a uniform prior (Johnson and Hoeting, 7 

2003). 8 

Model 8: Combination of AR-1 and linear time trend 9 

Based on the modelling results pertaining to the posterior deviance and effective parameters 10 

employed for all models, the authors developed two more models by combining the strengths of 11 

different specifications. The autoregressive specification (Model 7) employs lag-1 dependence of 12 

errors where the prior year is taken into consideration. The linear trend (Model 3) portrays a 13 

different treatment of time by considering the yearly time interval as an explanatory variable 14 

which may be a viable significant factor for the crash occurrence. Model 8 combines the 15 
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capabilities of both the aforementioned models and the model takes the following form:  1 

                                         log���� = 	�� + ���� + ��%&' + ∅� + ��� (14) 

Where the error term (���) follows the distribution from Model 7 and rest of the variables 2 

follow the specifications as previously stated. 3 

 4 

Model 9: Combination of AR-1 and time-varying coefficients 5 

Ae mentioned previously, Model 8 is similar to the STEPAR specification provided in 6 

SAS/STAT 9.2 software package, which combines a time trend regression with an autoregressive 7 

model for departures from trend (Lunn et al., 2000). To further explore the performance of the 8 

combination of different temporal treatments, the authors also proposed a new model, or, Model 9 

9, which is the mixture of AR-1 and time-varying coefficients. The common trends of the 10 

proposed models are expected to yield more reliable performance of the combination models 11 

relative to the conventional models. Likewise, the form of Model 9 can be expressed as follows:  12 

                                         log���� = 	��� + ������ + ∅� + ��� (15) 

Where the error term (���) follows the distribution from Model 7 and rest of the variables 13 

follow the specifications as previously stated. 14 

2.2 Convergence Checking 15 

These nine models were estimated with the Full Bayesian techniques using the open source 16 

software WinBUGS (Brooks and Gelman 1998). While fitting these models to the crash data, 17 

summary statistics of the posterior inference of parameters were obtained via two chains with 18 

30,000 iterations, initial 10,000 of which were discarded as a burn-in sample. Convergence was 19 
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monitored to ensure that posterior distribution has been found and sampling should be initiated 1 

(El-Basyouny and Kwon 2012). Convergence was assessed by visual inspection of the Markov 2 

chains trace plots for the model parameters. Moreover, the number of iterations was selected 3 

such that the ratios of Monte Carlo error for each parameter in the model relative to standard 4 

deviations would be less than would be less than 0.05. Also, the convergence of multiple chains 5 

was assessed by ensuring the value of Brooks–Gelman–Rubin (BGR) statistic (Spiegelhalter et 6 

al. 2002) to be less than 1.2. 7 

2.3 Model Comparison 8 

The present study employed a set of evaluation criteria to compare the modelling performance 9 

which contains the penalized goodness-of-fit (GOF), cross validation as well as prediction 10 

assessment based on in-sample date. The purpose is two-fold: the various criteria not only 11 

demonstrate the performance of models from different angles, but also allow us to check the 12 

possible correlation of different assessment measures. The details of each criterion are described 13 

in order as follows. 14 

2.3.1 Deviance Information Criterion (DIC) 15 

This study used the penalized goodness-of-fit criterion of DIC for model comparison as it 16 

accounts for the complexity of the model inferred from the use of effective number of 17 

parameters. DIC is a hierarchical Bayesian equivalent of Akaike's Information Criteria (AIC), 18 

which was proposed by Spiegelhalter et al. (2003) to account for model fit and complexity. DIC 19 

is especially useful for hierarchical model structures since the number of parameters employed 20 

for model development is not always evident. Specifically, DIC is defined as an estimate of fit 21 

plus twice the effective number of parameters: 22 
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 012 = 0��̅ + 2�5 = 06 + �5 (16) 

Where 0��̅ is the deviance evaluated at the posterior means of the parameters of interest (�̅), 1 

and posterior mean deviance 06 can be taken as a Bayesian measure of fit or “adequacy”. �5 2 

denotes the effective number of parameters in a model, which reflects the complexity of the 3 

model, as the difference between 0��̅ and 06, i.e., mean deviance minus the deviance of the 4 

means. Generally, smaller values of DIC are preferred. As a general guideline by Spiegelhalter et 5 

al. (2003), a difference of 7+ points in the DIC is treated as significant for modelling 6 

performance, and the lower value of DIC indicates superior goodness-of-fit. 7 

2.3.2 Log Pseudo Marginal Likelihoods (LPML) 8 

This criterion computes the conditional predictive ordinates (CPOs) by using the cross-validation 9 

predictive densities (Gelfand, 1996; Mukhopadhyay and Gelfand, 1997). The CPOs allow the 10 

estimation of LPML and pseudo Bayes factor (PBF), which gives the measure of superiority 11 

among two competing models (Ntzoufras, 2009; Heydari et al., 2016). The predictive capability 12 

was checked based on a special case of cross-validation, that is, leave-one-out cross-validation 13 

(LOOCV). This technique is similar to the conventional cross-validation as the dataset 14 

comprising of crash counts at individual locations are split up into two subsets, where one acts as 15 

validation set and the other as training set. However, in the case of LOOCV, the validation set 16 

only contains one observation while rest of them make up the training set. This is contrary to the 17 

conventional approach where the original dataset is usually divided into equal subsets. LOOCV 18 

approach allows a significant reduction of test errors and leads to relatively unbiased estimates. 19 

This approach also allows the capability to handle the randomness of results usually associated 20 
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with the selection bias introduced in the conventional method since LOOCV repeatedly fits the 1 

entire dataset by choosing a different observation as the validation set till each location has been 2 

incorporated (James et al., 2013). In general, Under the MCMC framework, calculation of LPML 3 

can be done through the following expression: 4 

                                                        7289 = :&;∑ &
=�>?|@�A;�B& C-&

D8ED = ∑ log�289�F�B&
                                               (17) 5 

Where CPO is conditional predictive ordinate; Yi is the ith observation (i = 1, 2, 3, . . ., n) for all 6 

TAZs; β is the vector of estimated model parameters; ��G�|��� is the likelihood; t represents the 7 

number of iterations in MCMC simulation. The larger the LPML value, the better the predictive 8 

performance tends to be.  9 

2.3.3 Mean Absolute Deviation (MAD) 10 

MAD is a popular criterion frequently employed by the researchers to check the fitness of data 11 

irrespective of its distribution. It is simply based on the model deviation or residue. The 12 

corresponding expression is shown in Equation 18. 13 

                                                       EH0 = &
F∑ |G� − 9�|	F�B&                                                       (18) 14 

Where G� is the Bayesian-estimated crash frequency and 9� is the observed crash count for TAZ i 15 

by a model during the same time period. The smaller the MAD value, the better fitness to the 16 

data. 17 

2.3.4 Root Mean Square Error (RMSE) 18 

RMSE essentially represents the sample standard deviation for the discrepancy between 19 
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Bayesian estimated crash counts and the observed crashes for the specific TAZ. Specifically, 1 

RMSE assumes the form shown below: 2 

                                                       IEJK = L&
F∑ �G� − 9�!F�B&                                                 (19) 3 

Where terms are as defined previously. Again, the smaller RMSE is desirable as it indicates 4 

superior performance due to lesser discrepancy between observed and estimated crash counts. 5 

2.3.5 Chi-squared Residual Sum of Squares (RSS) 6 

The Chi-squared RSS is defined as: 7 

 IJJ =M �9� − G�!G�
F
�B&  

   

(20) 

The TAZs with considerably larger crash counts may be penalized more under the MAD and 8 

RMSE due to greater residues. RSS (Cheng and Washington, 2008) tends to remove such bias by 9 

calculating the squared residual relative to the estimated number of crashes. The smaller RSS 10 

value indicates reliability in terms of accuracy.  11 

3. Data Description 12 

This study was conducted on the data of 203 TAZs from the city of Irvine, California. Various 13 

other studies have focused on the TAZs for planning-level analysis of crashes as they have 14 

benefits of better homogeneity and easy integration into the transportation planning process 15 

(Siddiqui et al. 2012; Abdel-Aty et al. 2013; Pulugurtha et al. 2013). As the objective of this 16 

study required the development of crash prediction models, while accounting for spatial and 17 
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temporal correlations, an array of variables was employed. In specific, 9-year crash data (2003-1 

2011) used as independent variables were collected from Statewide Integrated Traffic Records 2 

System (SWITRS), and other covariates containing socioeconomic factors, transportation-related 3 

information and road environment factors covering the same period were provided by SCAG 4 

(Southern California Association of Governments). The relatively long period was selected to 5 

ensure a clean serial trend in crashes since AR-1 model is reliant on the previous one year’s 6 

crash count. The crash dataset was comprised of fatal and injury collisions only, without the 7 

inclusion of property damage only (PDO) due to the underreporting issue related to those crashes 8 

(Ye and Lord 2011). The map showing the TAZs and the distribution of hotspot and cold spots 9 

based on observed crash count is presented in Figure 1. Daily Vehicle Miles Travel (DVMT) was 10 

incorporated as the traffic exposure factor (Miaou et al. 2003). As the models also incorporated 11 

the spatial correlations, the distance between the geometric centroids of TAZs was also obtained 12 

from SCAG. As the city of Irvine has 203 TAZs, so the distance matrix had the size of 203x202 13 

with a minimum value of 0.16 miles and maximum of 13.21 miles. Summary information for the 14 

various dependent and independent variables for the TAZs is shown in Table 1. As this research 15 

was done at the planning level, so we used similar a set of variables in accordance with the 16 

SCAG. The statistics reflect the respective measure (maximum, minimum, and so on) for a 17 

particular year while considering the whole dataset of 9 years (2003-2011). It is important to note 18 

that many of the variables have ‘zero values’ for the minimum statistics which may be attributed 19 

to the fact that some of the areas (TAZs) differed from the rest with respect to the ‘area type’. 20 

For example, some areas may be completely vacant, farms, or only serve as office destinations 21 

without any permanent residents.   22 

For each model, preliminary multi-collinearity tests and stepwise selection methods were 23 
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employed in selecting the best subset of predictors for final model development. To obtain a 1 

parsimonious model and ensure the most appropriate subset of variables was entered for model 2 

development, various techniques were employed for detection of correlated variables. First, the 3 

correlation tests were conducted using the Harrell Miscellaneous package in R software which 4 

allowed the calculation of Pearson correlation coefficient. The variables observed to be 5 

correlated at a significance level of 0.05 were eliminated in multiple steps. Second, the 6 

autocorrelation plots generated for variables under the sample monitor menu were also checked 7 

by visual inspection to ensure each variable followed an expected shape which inferred absence 8 

of any significant autocorrelation among the two chains and ensured structural robustness of the 9 

model. Only the variables which satisfied the criteria were incorporated for model development. 10 

[Figure 1 about here] 11 

[Table 1 about here] 12 

4. Results 13 

4.1 Model Estimates 14 

Only the statistically significant variables were shown in Table 2. It should be noted that since 15 

the main objective of this study was to explore the similarities and differences among the 16 

alternate modelling approaches rather than investigation of influential factors, hence the 17 

explanation of results is focused in that direction hereafter. As evident from Table 2, the models 18 

had a similar set of variables that were identified to have a significant impact on crash risk. The 19 

traffic exposure precursor of VMT and household density were consistently observed to be the 20 

two significant factors across all models. Such consistency demonstrates the robustness of all the 21 

developed models.  Models 3, 4, and 8 captured an additional influential factor (linear trend) 22 
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which was consistently observed to have a negative correlation with crash frequency. This 1 

capability of the concerned models allowed the quantification of this relationship, i.e., the 2 

crashes are expected to decrease with the passage of time, hence resulting in less biased 3 

estimates for the other explanatory factors. This clarity will help generate more meaningful and 4 

accurate inferences for regulating the influential factors. In the case of models with AR 5 

specification (Models 7~9), the autocorrelation coefficient (γ) was statistically significant in 6 

Models 7 and 9. The exception of Model 8 may be attributed to the inclusion of linear trend 7 

which may have captured the serial correlation to some degree and hence rendering the * non-8 

significant. The largest value of * was observed for Model 9 (* = 0.86), which is closer to 1 9 

while the other two models’ * values incline more towards zero. This indicates that in the case of 10 

the model with time-varying coefficients (Model 9), the AR specification generated a larger 11 

contribution from the previous year for estimation of crash counts for the present year whereas 12 

for the other two models it resembled the white noise. 13 

[Table 2 about here] 14 

4.2 Model Fitness and Predictive Accuracy 15 

Table 3 shows the comparison results for model fitness �06 and the effective number of 16 

parameters (Pd). A substantial model-fitting improvement was observed in the models which 17 

accounted for serial autocorrelations (Models 7~9). The models with independent and fixed-time 18 

random effects (Models 1 and 2) had a 55-point difference of DIC value compared to the best 19 

performing model (Model 8). Contrary to the expectation that fixed over time random effects 20 

(Model 2) may improve model fit by reducing the degree of freedom, the similar DIC as well as 21 

	06 and �5 indicate that this specification employed similar number of effective parameters and 22 
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lend no significant advantage at model fit. The addition of linear or quadratic trend improved 1 

model fit without any substantial increase in the number of model parameters, as reflected by 2 

similar values of �5 for Models 1~4. The time-varying intercept or coefficients seemed to 3 

employ larger number of effective parameters (significantly larger in the case of Model 6), but 4 

the corresponding reduction in posterior deviance balanced the overall goodness-of-fit 5 

performance (DIC). The AR models had the lowest DIC even though they employed the largest 6 

number of effective parameters, as reflected by their highest values of �5. On closer scrutiny, it 7 

was revealed that the incorporation of γ significantly reduced the deviance	�06, which 8 

compensated for the increase in DIC due to the inclusion of more effective parameters. The 9 

worst model fitness was exhibited by Models 1 and 2, while Models 3, 4, and 5 had almost 10 

similar DIC values, considering that the difference of 7 points in DIC reflects equivalent 11 

goodness-of-fit. It is noteworthy that the inclusion of more time-varying coefficients (Model 6) 12 

significantly reduced the deviance (average difference of around 40) but the effective parameters 13 

increased due to the addition of yearly-varying coefficients for each covariate. However, the 14 

remarkable reduction of posterior deviance due to the addition of more parameters eventually 15 

compensated for the potentially raised complexity and led to a superior overall fit, with a 16 

difference of 9 points in the DIC compared to Model 5. This demonstrates the advantage 17 

associated with such models to fit the crash data better as they allow the flexibility to 18 

accommodate the yearly-varying influential factors. Given the consideration for fit and 19 

complexity, the proposed model of AR-1 and linear trend (Model 8) exhibited the best 20 

performance as assessed by the penalized DIC. The second proposed model (Model 9) exhibited 21 

similar advantage at overall fit with a difference of 1 point in DIC. It is noteworthy, though, that 22 

the two proposed models seem to adopt different approaches for generating superior fit. Model 8 23 
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employed lesser number of effective parameters as it incorporated only the linear trend as an 1 

addition to the regular AR specification. On the other hand, Model 9 employed the advantage of 2 

time-varying coefficients which allowed significant reduction of posterior deviance (13-point 3 

difference in 06), while simultaneously utilizing larger number of parameters (15-point difference 4 

in Pd) for estimation. These models offer the balance between fit and complexity as they borrow 5 

the strengths from different specifications. The linear trend and time-varying coefficients 6 

allowed the maintenance of an optimum number of effective parameters (considerably lower 7 

than traditional AR specification), while adopting the advantage of the lowest deviance from AR 8 

(Model 7). Clearly, such combinations keep a check on effective number of parameters  while 9 

maintaining sufficient deviance to reach the lowest DIC indicating the superior flexibility to fit 10 

the crash data.  11 

The cross-validation criterion of LPML and three other criteria were employed to 12 

evaluate the model accuracy from different perspectives. Relatively higher LPML and lower 13 

MAD, RMSE, and RSS values indicate better capability to predict the crash count in an area.  14 

This reflects the accuracy of these methods to predict crashes with least deviation from the 15 

observed count. Model 7 consistently outperformed the competing models by demonstrating 16 

higher accuracy for crash prediction. This superiority may be attributed to the lowest posterior 17 

deviance of Model 7 which enabled it to fit the observed crash data in a more refined manner. 18 

Overall, the AR models performed better than the rest across all evaluation criteria. The worst 19 

values were observed for Model 1 and Model 2, while the addition of linear or quadratic trend 20 

improved the prediction capabilities, which could be attributed to the inclusion of quadratic time 21 

trend for providing a subtler fitting to the data. A similar trend of enhancement in performance 22 

was observed with the incorporation of time varying intercept or coefficients, in that order, 23 
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indicating that the flexibility of model specifications seems to improve the prediction 1 

capabilities.  2 

The superior performance demonstrated by the AR models indicated that the advantages 3 

of model fit may be transferable to prediction accuracy. Considering this possibility, the authors 4 

were interested in exploring if some correlation may exist among the various prediction accuracy 5 

criteria and the GOF measures. As shown in Figure 2, the posterior deviance �06 exhibited a 6 

strong positive dependency with LPML, MAD, RMSE, and RSS. Moreover, as expected, the 7 

increased effective number of parameters appeared to decrease the posterior deviance. It is also 8 

interesting to note that DIC seemed to have the same trend with posterior deviance, which 9 

indicates that the prediction accuracy had a larger influence on the DIC than did the effective 10 

number of parameters, in the case of this study. This relationship between the components of 11 

GOF and evaluation measures pertaining to prediction performance may be beneficial to safety 12 

professionals for model selection as they can make the educated judgement without the 13 

comprehensive evaluation, which may not be feasible under some conditions such as financial 14 

constraints or time inadequacy.  15 

[Table 3 about here] 16 

[Figure 2 about here] 17 

5. Conclusions and Recommendations 18 

This study was mainly focused on the evaluation of alternative ways of addressing serial 19 

correlation in crash prediction models, which include two newly proposed models which 20 

combine two types of temporal treatments. Nine-year traffic data of 203 TAZs from the city of 21 

Irvine were used to develop nine statistical models based on the Full Bayesian framework. The 22 

models varied in their complexity, with the simplest model being independent over time and the 23 
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proposed models (most sophisticated) being a combination of AR-1 and time-varying 1 

coefficients or linear trend. It is noteworthy that a distance-based spatial random effect term was 2 

intentionally introduced so as not to blur the probable advantages of temporal random effects. 3 

Comparisons were made among these models based on various evaluation criteria. Some 4 

important findings are shown as follows: 5 

1. The number of statistically significant variables being identified was generally similar 6 

across all models which indicates their robustness. However, the treatment of time as a 7 

covariate in the form of linear trend proved to be an important addition as it was observed 8 

to be statistically significant with a negative correlation with crash frequency. 9 

2. The results from DIC revealed significant differences in modelling performance amongst 10 

the competing models. The models with independent and fixed-time random effects had 11 

55 points of DIC higher than the AR models. The inclusion of time-varying coefficients 12 

was observed to result in significant reduction in the posterior deviance. Although such 13 

models employed higher number of effective parameters, but remarkable advantage at 14 

deviance generated superior overall fit. Overall, the two proposed models outperformed 15 

the competing models with superior fit with the observed crash data. These models were 16 

developed by combining advantage of lowest deviance from AR specification with the 17 

linear trend (Model 8) and time-varying coefficients (Model 9), while employing the 18 

optimum number of effective parameters to generate lowest DIC. 19 

3. For prediction accuracy, the model which accounted only for the autoregressive effect 20 

(Model 7) illustrated the superior performance in terms of both cross validation and 21 

typical assessment based on the same data used to develop models.     22 
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4. Strong correlations were observed among the various prediction assessment criteria 1 

including 06, LPML, MAD, RMSE, and RSS. In addition, the increased effective number 2 

of parameters was accompanied with the increase of prediction accuracy. Finally, given 3 

that the DIC and 06 had the same trend generally, it can be concluded that the 06 had a 4 

larger impact on DIC then did �5in the case of this study. 5 

5. In sum, Model 7 (AR-1) was ranked the first with respect to the predictive capability. 6 

However, the performance can be improved by combining the autoregressive effect with 7 

other temporal treatment (as illustrated in Model 8 and Model 9) if the penalized 8 

criterion, DIC, was utilized, as the latter ones could yield similar prediction accuracy 9 

using relatively smaller effective number of parameters.    10 

Although the research here reflects an improved understanding of how various temporal 11 

treatments perform, further work is still needed. Some of the recommendations are mentioned 12 

below: 13 

1. The study used the zonal level data for evaluation of veracious temporal treatments of 14 

crash data. The studies based on different geospatial units are needed to verify the results 15 

obtained in this study. 16 

2. Only AR-1 was chosen to represent the large body of models involving the 17 

autoregressive process. Those models are also worthwhile to explore and check whether 18 

there are better models than the proposed ones of this study.  19 

3. Only two combination models were proposed for illustrative purpose. More ways of 20 

temporal combination are preferred to check the performance of these models relative to 21 

the typical ones.  22 
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4. The correlation analysis of the evaluation criteria was based on a small number of 1 

observations (9 models), more models are expected to yield more reliable result of the 2 

correlation analysis.   3 

5. The Full Bayesian hierarchical approach was employed for incorporating heterogeneities 4 

in crash data. Other frameworks may also be explored.  5 
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FIGURE 1  Crash distributions at TAZ level in the City of Irvine, California. 
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FIGURE 2  Correlation among the evaluation criteria 

Notes: 1. The curve in the principal diagonal represents the density plot of each variable; 

2. The linear line results from the simple linear regression of each evaluation pair. 
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TABLE 1  Descriptive Statistics of Collected Data of Various TAZs 

Variables Description Minimum Maximum Median Mean S.D. 

Collision Total Annual Fatal and Injury 

Collisions 

0 56 3 5.06 6.6 

VMT_per_day Vehicle Miles Travelled per 

day 

112.57 276079.92 34795.66 54262.44 56156.84 

Acre TAZ area in acre 0.69 5062.95 183.35 282.90 431.75 

Med-inc Median household income ($) 0.00 183347.00 41581.00 48440.78 50635.10 

Pop_den Population density 

(persons/acre) 

0.00 32.40 0.79 6.19 7.96 

HH_den Household density (hh/acre) 0.00 13.62 0.10 2.34 3.15 

Emp_den Employment density 

(jobs/acre) 

0.00 121.10 2.01 10.34 17.43 

Ret_den Retail job density 0.00 17.45 0.08 0.79 2.02 

RetSer_den Retail+ Service (retail + FIRE 

+ ArtsFood + Other Serv.) job 

density  

0.00 50.60 0.44 2.99 6.29 

Jobmix13 Job mix (13sectors); 1 = 

highest mix (jobs are equal for 

all sectors) 

0.00 0.93 0.62 0.54 0.28 

Int34_Den Intersection density (3- and 4- 

legs) 

0.00 0.62 0.08 0.12 0.12 

BKlnAcc Bike lane access (1=if a TAZ 

has bike lane) 

0.00 1.00 1.00 0.92 0.28 

Rail 1=at least one rail station in a 

TAZ 

0.00 1.00 0.00 0.01 0.10 

TTbus_D Total Bus Stop Density 0.00 0.53 0.01 0.05 0.09 

WalkAcc Walk Accessibility 0.00 74.53 0.42 3.87 9.46 

Pct_Art Percent of main arterial (45-55 

mph) of TAZ 

0.00 0.80 0.00 0.11 0.17 

Distance Distance among centroids of 

TAZs (unit: miles) 

0.16 13.21 4.24 4.42 2.23 
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TABLE 2  Estimates of Variable Coefficients Obtained by various Models 

 Models Variables and Parameters 

 ��  ��  �� ��� ��� � 

 (Intercept) 

(VMT per 

day, in 

thousands) 

(Household 

Density) 

(linear 

trend) 

(quadratic 

trend) 

(autocorrelation 

coefficient) 

1 
-5.296 

(0.6338) 
0.5843 

(0.06031) 
0.090 

(0.02464) 
      

2 
-5.259 

(0.4876) 
0.5811 
(0.046) 

0.0896 
(0.02409) 

      

3 
-5.631 

(0.6935) 
0.6242 

(0.06575) 
0.0924 

(0.02394) 
-0.0167 
(0.004) 

    

4 
-5.306 

(0.5162) 
0.5985 

(0.04858) 
0.0913 

(0.02261) 
-0.0474 

(0.01764) 
0.0031 

(0.00173) 
  

5 

-4.881 
(0.403) 

0.5564 
(0.0377) 

0.0868 
(0.0262) 

      

-5.008 
(0.4031) 

-4.931 
(0.4034) 

-4.974 
(0.4034) 

-5.036 
(0.4033) 

-5.065 
(0.4032) 

-5.039 
(0.4034) 

-5.011 
(0.4035) 

-5.048 
(0.4031) 

6 

-4.843 
(0.7103) 

0.5561 
(0.06606) 

0.08022 
(0.0251) 

      

-5.372 
(0.7149) 

0.5904 
(0.06625) 

0.08851 
(0.02546) 

-5.097 
(0.6457) 

0.577 
(0.06021) 

0.06779 
(0.02533) 

-5.742 
(0.7055) 

0.6296 
(0.06538) 

0.07294 
(0.02549) 

-5.162 
(0.6687) 

0.5713 
(0.06225) 

0.07796 
(0.02542) 

-4.585 
(0.6869) 

0.5097 
(0.06397) 

0.1085 
(0.02512) 

-5.125 
(0.709) 

0.5637 
(0.06598) 

0.09617 
(0.02509) 

-5.521 
(0.6829) 

0.6011 
(0.06347) 

0.09905 
(0.02515) 

-6.037 
(0.6774) 

0.6391 
(0.06294) 

0.1199 
(0.02522) 
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7 
-5.407 

(0.6191) 
0.5944 

(0.05932) 
0.08915 

(0.02295) 
    

0.108 
(0.03005) 

8 
-4.888 

(0.6716) 
0.5533 

(0.06367) 
0.0864 

(0.02315) 
-0.01694 

(0.004494) 
  

0.06384 

(0.05583) 

9 

-5.086 
(0.7401) 

0.5787 
(0.06936) 

0.08244 
(0.0256) 

    
0.8625 

(0.1238) 

-5.556 
(0.7747) 

0.6077 
(0.07237) 

0.09007 
(0.02596) 

-5.359 
(0.7681) 

0.601 
(0.07182) 

0.07007 
(0.02593) 

-5.998 
(0.8074) 

0.653 
(0.0751) 

0.07515 
(0.02617) 

-5.382 
(0.7727) 

0.5915 
(0.07224) 

0.07931 
(0.02622) 

-4.756 
(0.7805) 

0.5257 
(0.07317) 

0.1089 
(0.02578) 

-5.36 
(0.7745) 

0.5854 
(0.07234) 

0.09688 
(0.02619) 

-5.73 
(0.8338) 

0.6205 
(0.0776) 

0.09954 
(0.0262) 

-6.187 
(0.7965) 

0.6534 
(0.07423) 

0.1196 
(0.02604) 

Notes: 1. Numbers in parentheses represent uncertainty estimates, or, posterior standard deviations. 

2. The statistically non-significant (at level of 0.05) variable coefficients are shown in italics.   
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TABLE 3  Goodness-of-fit and Prediction Performance of Alternate Models 

Models �� Pd DIC LPML MAD RMSE RSS 

1 6864.41 193.941 7058.35 -3342.1 1.586 2.330 1716.8 

2  6864.44 193.822 7058.26 -3342.3 1.586 2.330 1716.6 

3  6847.49 195.113 7042.6 -3333.7 1.579 2.311 1702.2 

4  6845.02 195.35 7040.37 -3332.7 1.574 2.308 1696.6 

5  6841.19 201.052 7042.24 -3328.7 1.565 2.285 1684.9 

6  6816.33 217.323 7033.65 -3311.7 1.534 2.217 1640.9 

7  6691.19 325.544 7016.74 -3224.6 1.361 1.896 1382.5 

8  6721.79 281.835 7003.62 -3245.2 1.413 1.983 1450.4 

9  6708.18 296.338 7004.51 -3238.3 1.394 1.956 1434.6 

Notes: 1. The values shown in bold represent the best performance under each criterion. 

2. ��-posterior mean deviance; 	
-effective number of parameters; DIC - Deviance Information Criterion; LPML- Log Pseudo 

Marginal Likelihoods; MAD- Mean Absolute Deviation; RMSE- Root Mean Square Error; RSS- Residual Sum of Squares. 
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