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ABSTRACT 1 

 2 

The current study contributes to the safety literature by presenting a dedicated research for 3 

comprehensive analysis of multivariate Dirichlet process mixture spatial model for estimation of 4 

pedestrian and bicycle crash counts. This study focuses on the active transportation at Traffic 5 

Analysis Zone (TAZ) level by developing a semi-parametric model that accounted for the 6 

unobserved heterogeneity by combining the strengths of incorporating multivariate specification 7 

to accommodate correlation among crash modes, spatial random effects for the impact of 8 

neighboring TAZs, and Dirichlet process mixture for random intercept. Three alternate models, 9 

one Dirichlet while two parametric, were also developed for comparison based on different 10 

criteria. 11 

Bicycle and pedestrian crashes shared three influential variables: the positive correlation 12 

of K12 student enrollment, the bike-lane density, and the percentage of arterial roads. The 13 

heterogeneity error term demonstrated the presence of statistically significant correlation among 14 

the bicycle and pedestrian crashes while the spatial random effect term exhibited the absence of a 15 

significant correlation, which might explain the slightly inferior performances associated with 16 

the spatial models. The Dirichlet models were consistently superior to non-Dirichlet ones under 17 

all evaluation criteria. Moreover, the Dirichlet models exhibited the capability to identify the 18 

latent distinct subpopulations and suggested that the normal assumption of intercept associated 19 

with traditional parametric models does not hold true for the TAZ level crash dataset of the 20 

current study.  21 

 22 

Keywords: Dirichlet process, Multivariate, Spatial Correlation, Cross Validation. 23 

 24 
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INTRODUCTION 1 

Non-motorists are defined as road users not in or upon a motor vehicle and generally consist of 2 

walking pedestrians, bicyclists, individuals in wheel chairs or motorized personal conveyances, 3 

skateboarders and others (1). They are a vulnerable segment of the traveling public due to the 4 

lack of a protective structure and difference in body mass between them and motor vehicles, 5 

which renders them prone to heightened injury susceptibility in case of a collision (2). On the 6 

other hand, active transportation provides enormous benefits for addressing the issues of 7 

congestion, health, and environment (3-8). Therefore, encouraging individuals to indulge in 8 

active transportation, involving walking and bicycling, brings with it a societal obligation to 9 

protect commuters as they engage in these modes of travel. In response, fairly extensive research 10 

(9-14) has been dedicated to the investigations into factors impacting non-motorist safety on 11 

roadways. While these studies are useful for identifying safety risks contributing to cyclist, 12 

pedestrian, and motor-vehicle injury occurrence, these modal crashes have been modeled 13 

separately, and few attempts have been made to combine them into a multimodal approach, 14 

which allows the flexibility to simultaneously determine the injury risk of different travel modes. 15 

Plus, the multimodal approach may also ease the task of selecting sites for safety improvement 16 

interventions as well as potentially provide a more economically viable solution and 17 

interventions for pedestrians and cyclists. 18 

 A central issue to the successful implementation of the multimodal approach is the 19 

development of multivariate crash frequency models which can jointly estimate the crash risk of 20 

different modes which share some of the unobserved heterogeneity. Ignorance of such 21 

correlation among the multiple modes has been illustrated to reduce the efficiency of the models 22 

due to lesser precise parameters (15-17). In comparison with the large number of univariate 23 

models dedicated to various mode users, very few studies have used the joint models to analyze 24 

the interaction between different modes of active transportation. Recently, Convay et al. (18) 25 

performed a bivariate correlation analysis to find the locations of conflict occurrence among 26 

bicycles and pedestrians, freight, passenger cars, and cabs in an urban area. The conflict was 27 

defined as the obstructions parked in or across the bicycle lane. The characteristics which 28 

influenced the conflicts for between these modes were also explored. In order to simultaneously 29 

analyze the injury and traffic flow outcomes for different modes, Strauss et al. (19) subsequently 30 

employed Bayesian multivariate Poisson models for studying safety outcomes for motor-vehicle, 31 

cyclist and pedestrian flow at intersections. Safety performance functions were developed and 32 

crash contributing factors were identified for each mode.  33 

One common limitation associated with above two studies lies in the lack of 34 

consideration for spatial correlations within crash data. The significance of incorporating spatial 35 

correlations was highlighted by many studies (20-22) with the consistently superior performance 36 

of the spatial models over those accounting for heterogeneity random effect only. The study by 37 

Narayanamoorthy et al. (23) jointly analyzed the pedestrian and cyclist injury-severities while 38 

accounting for the spatial correlation at the census tract level using generalized ordered-response 39 

models. This study recommended the use of multivariate modeling and spatial dependency of 40 

injury counts. Similarly, Nashad et al. (24) employed a copula-based approach for simultaneous 41 
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estimation of crash counts for bicyclists and pedestrian crashes aggregated at the macro-level of 1 

traffic analysis zones (TAZs). The incorporation of spatial term facilitated the identification of 2 

hotspots at the zonal level which may prove beneficial for policy analysis. 3 

Similar to the incorporation of spatial correlation structures, some studies in traffic safety 4 

addressed the unobserved heterogeneity by employing nonparametric and/or semiparametric 5 

models and observed their superiority at various fronts such as robustness and goodness-of-fit 6 

(25-26). In terms of research dedicated to active transportation, the recent study by Heydari et al. 7 

(27) proposed the Dirichlet process mixture (28) to develop flexible latent class model for joint 8 

analysis of pedestrian and cyclist injuries at the micro-level of intersections. It was observed that 9 

the flexible approach was advantageous as it demonstrated superior predictive performance and 10 

better capability to capture the correlated crash data which eventually provided more accurate 11 

interpretation of influential factors for improvement of safety environment. The results also 12 

demonstrated the need for consideration of such flexible structure as the assumption of 13 

homogeneity (in case of parametric models) among roadway entities was observed to be false. 14 

The literature review illustrated the limited use of semi- or non-parametric models for 15 

simultaneous analysis of active transportation mode crashes. In effect, to the knowledge of the 16 

authors, the research for comprehensive analysis of flexible multivariate spatial models focusing 17 

on active transportation is non-existent in the safety literature. To fill this research gap, the 18 

authors adopted semi-parametric formulation that accounts for the unobserved heterogeneity by 19 

combining the strengths of incorporating multivariate specification of dependency among crash 20 

modes (pedestrian and bicyclists), spatial random effects for the impact of neighboring areas, and 21 

Dirichlet process mixture for random intercepts. Four alternate models were developed for 22 

comparison based on the goodness-of-fit and predictive accuracy. LPML (log pseudo marginal 23 

likelihood) was calculated for cross-validation utilizing leave-one-out technique which makes 24 

this criterion less prone to selection bias associated with other cross-validation measures. Five 25 

other evaluation criteria were employed, namely: mean absolute deviations (MAD), mean-26 

squared predictive error (MSPE), the Rp
2 statistic, the G2 statistic, and residual sum of squares 27 

(RSS), which compare the alternate models on the basis of their performance to accurately 28 

predict the crash counts for both modal crashes. The benefits of the flexible model structure were 29 

also explored in terms of identification of latent clusters and accommodation of random 30 

distribution for parameters. 31 

 32 

METHODOLOGY 33 

Model Specification 34 

The Full Bayesian (FB) framework was employed for estimation of six-year bicyclist and 35 

pedestrian crashes aggregated at the Traffic Analysis Zone (TAZ) level. The FB approach was 36 

chosen due to its capability to account for the unobserved heterogeneity from different 37 

perspectives, such as incorporation of complex potential correlation structures that exist within 38 

the hierarchical structure of crash data. The FB approach is deemed to be more precise for 39 

estimation of crashes with regard to its capability to generate a posterior distribution of 40 

parameters from Markov-chain Monte Carlo (MCMC) simulation where the variable samples are 41 
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random, rather than the point estimates generated by other traditional modeling approaches based 1 

on maximum likelihood estimation. This approach has been widely used for crash prediction 2 

models due to the multilevel and correlated nature of data (29). Four crash frequency models 3 

were developed. The general functional form of the models is given in the following subsections, 4 

while progressing from simple to sophisticated specifications. 5 

Model 1: Multivariate 6 

This model assumes that crash count of certain modal crash j at a given location i, yij , 7 

obeys Poisson distribution, while the corresponding observation specific error term εij  follows a 8 

multivariate normal distribution: 9 

                                                          ���|���~��	

��	(���)                                                (1) 10 

                                                           ln����� = ���� � + ���                                                          (2) 11 

                                                             ���~���	(0, ∑)                                                             (3) 12 

Where        � ! = "#$%#$&		
' ,           ( ! = ")$%)$&		

' ,          * ! = "+$%+$&		
'  ,          ∑ =	 ,-.. -./-./ -//0             (4)                      13 

In above equations, X’  is the matrix of risk factors, β is the vector of model parameters, εij  is the 14 

independent random effect which captures the extra-Poisson heterogeneity among locations. ∑ is 15 

called the covariance matrix. The diagonal element 122 in the matrix represents the variance of 16 

342, where the off-diagonal elements represent the covariance of crash counts of different modes. 17 

The inverse of the covariance matrix represent the precision matrix and has the following 18 

distribution: 19 

                                                                     ∑5.~6	
ℎ89:(;, <)                                                 (5) 20 

Where I is the J x J identity matrix (30), and J is the degree of freedom, J=2 herein representing 21 

two crash outcomes corresponding to bicyclist and pedestrians crashes.  22 

Model 2: Multivariate Spatial 23 

Under Model 2, the spatial random effects were incorporated over the model represented in 24 

Equation 2. The final model takes the following form to account for spatial correlations among 25 

the TAZs: 26 

                                                                 ln����� = ���� � + ��� + =��                                         (6) 27 

Where uij is the spatially structured random effect which follows the MCAR (multivariate 28 

conditional autoregressive) (31) formulation to incorporate the spatial correlation among crashes 29 

occurring at neighboring TAZs.  30 

                                                          =�|=>, ∑ 	 	~��(∑ ?�>>~� , =>, ∑ 			)                                   (7) 31 

Where each 	∑ 	  is a positive definite matrix representing the conditional variance matrix, and 32 

the adjacency matrix @42 is of the same dimension with	∑ 	 (32). The precision matrix 33 

∑ 	5.	 follows the Wishart distribution as shown in Equation 5.  34 

As we can see from the above equations, estimation of the risk in any site is conditional 35 

on risks in neighboring locations. Subscripts i and k refer to a TAZ and its neighbor, 36 

respectively, and k belongs to Ni where Ni represents the set of neighbors of TAZ i. Besides the 37 
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identification of neighbors, the assigned weights also affect the risk estimation. In the past 1 

studies (33-34), weight structures including various adjacency-based, distance-based models, and 2 

semi-parametric geographically weighted, and so on, have been explored. The current study 3 

employs the commonly used distance-based structure to explore the spatial correlations with the 4 

following formulation: 5 

                                                                          A�� = .
B$C

                                                                                          (8) 6 

Where wij is the weight between TAZ i and j, and dij is the distance between TAZ i and j. With 7 

this weight structure, it is known that more weightage was assigned to TAZs which are relatively 8 

closer. 9 

Model 3: Multivariate Dirichlet process mixture  10 

The parametric model specification of the aforementioned models assumed the distribution of the 11 

parameters to be specific (normal in this study) across all concerned sites. But the nonparametric 12 

specification removes such constrains by employing a flexible approach of Dirichlet process that 13 

allows the incorporation of unknown random density for the parameters. The current study 14 

employs a semi-parametric approach which relaxes the restrictive distributional assumption for 15 

the intercept only, instead of all of the parameters. The removal of constraints for the intercept to 16 

follow a specific distribution represents a plausible scenario where the TAZs are not expected to 17 

have a normal distribution. This flexible approach is expected to capture the extra variability 18 

which may escape the error terms introduced in parametric models. Equation 2 was modified to 19 

use Dirichlet process mixture over the intercept as follows (26):       20 

                                              	ln����� = �DE� + ����                                            (9)                                                                                                                          21 

					�DE� ≈ ∑ GH;IJ$
KHL. ~MN�	�OPD��,			Q� = �	A	:ℎ	G9�R8R	S	:�	�T	GH		                   (10)                                                                                                          22 

                                                                    PD~���	(UVWC , ∑)                                                (11) 23 

Where �DE� is the intercept for cluster r (r ranges from 1 to C) of mode j, k is the precision 24 

parameter, and PD is the baseline distribution for �DEwhich follows a multivariate normal 25 

distribution with mean UVW and variance	∑, which also follows the Wishart distribution. �DE� 26 

essentially represents a vector of probabilities over the space of concerned entities (203 TAZs) 27 

and follows a Truncated Dirichlet Process (TDP) with a vector of parameters represented by 28 

OPD�. The precision parameter k indicates the variability of the Dirichlet process around G0j. The 29 

intercept draws random points (XY$) and the associated probabilities (GH) can be obtained through 30 

the stick-breaking procedure (28, 35). If one cluster is occupied, the indicator function (;IJ$) at 31 

XY$ will take the value of 1, otherwise it would be 0. The number of latent clusters (r) in �DE� 32 

could range from 1 to infinity, which requires immense computational effort. To reduce the 33 

computational complexity by obtaining finite dimensional approximation, a truncated Dirichlet 34 

process is utilized to fix the maximum number of possible clusters to C, where C is governed by 35 

the precision parameter k and is estimated by 5k+2 (28). As the prior distribution for precision 36 

parameter k was assumed to be k ~ uniform (0.3, 9), so eventually the number of clusters were 37 
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limited to be maximum of 47. The value of C used in the study can be considered in a normal 1 

range given the different C values utilized previously such as 5 (36), 10 (37), and 52 (27).   2 

Model 4: Multivariate Dirichlet process mixture spatial 3 

Model 4 is distinct from Model 3 by incorporating the spatial random effects to account for the 4 

correlation among the neighboring TAZs. The model in Equation 9 takes the following form:  5 

                                                        	ln����� = �DE� + ���� +	=��                                              (12) 6 

Where all terms are defined as previously.        7 

Comparison of Models based on Cross Validation  8 

Many traditional approaches of cross-validation are prone to overestimation due to double usage 9 

of data, once during model development and then again for model checking. The approach of 10 

cross-validatory predictive densities was proposed to tackle this issue (38) where the full set of 11 

data was divided into two subsets (one subset for development and the other for checking). 12 

However, the splitting of two subsets posed a major problem as the selection of different subsets 13 

provides varying results. This was resolved by implementing a CV-1 (leave-one-out) technique 14 

to estimate the cross-validatory conditional predictive ordinate (CPO) (39) which removed the 15 

selection bias by employing a continuous approach of selecting all data points, except one, for 16 

model development and the left out data point to verify the prediction accuracy of the calibrated 17 

model. Under the MCMC framework, the estimate of CPO for each observation i can be 18 

calculated as: 19 

                                                         ?�Z = ,.
[ ∑ .

\(]$|^(_))
[̀L. 05.

                                               (13)  20 

Where Yi is the ith observation (i = 1, 2, 3, . . ., n) for all 203 TAZs and β is the vector of 21 

estimated model parameters. This harmonic mean of density (CPO) may be extended to calculate 22 

the goodness-of-fit of models by computing the product of CPOs over all observations, which is 23 

known as the pseudo marginal likelihood. For computational convenience, the log pseudo 24 

marginal likelihoods (LPML) is calculated: 25 

                                                         a��a = ∑ log(?�Z�)H�L.                                                    (14) 26 

The larger LPML value indicates a superior performance associated with the candidate model. 27 

 Evaluation Criteria for Predictive Accuracy  28 

In this study, the four competing models were also evaluated based on some criteria used from 29 

previous studies: MSPE (mean-squared predictive error, 23), the G2 statistic (40) , the Rp
2 30 

statistic (41), the Chi-squared Residual Sum of Square (RSS, 42). The reader wishing more detail 31 

on these measures can refer to these studies. The details of each criterion are shown in the 32 

following subsections. 33 

MSPE 34 

As indicated by the name, such criterion is related with the average squared deviations, or, the 35 

predictive errors. Specifically, the MSPE was calculated as follows:  36 

                                                       MSPE = .
h ∑ (�� − ��)/hjL.                                                    (15) 37 
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Where	�� is the Bayesian estimated crash frequency for zone i while �� is the observed crash 1 

counts of the same zone. The smaller MSPE is preferred which indicates a better prediction 2 

performance.  3 

RSS 4 

MSPE is based on the deviations. A potential issue is a larger estimated counts of one zone might 5 

mask the smaller ones of multiple TAZs. To address this issue, we also calculated the chi-6 

squared residual sum of squares to determine the deviation standardized by the the estimated 7 

number of crash counts: 8 

																																																																	kll = ∑ ()$5#$)&
)$

H�L.    (16) 

The model with a smaller value of RSS tends to have more predictive capabilties. 9 

The Rp
2
 statistic 10 

The typical R-square in ordinary linear regression cannot be directly applied to the crash 11 

frequency model due to the nonlinearity of conditional mean (E[y|X]) and heteroscedasticity 12 

associated with the Poisson models. Therefore, we adopted an equivalent measure, Rp
2, which is 13 

based on standardized residuals: 14 

                                                                km/ = 1 −
∑ op$qr$

sr$
t
&u$v%

∑ op$qpw
spw t

&u$v%
                                                   (17) 15 

 16 

Where �x represents the mean value of the observed counts. Similar to R-square, a smaller 17 

Rp
2value indicates the inferior performance. 18 

The G
2
 statistic 19 

The sum of model deviances, G2, is zero for a model with perfect fit. The G2 statistic is given as: 20 

                                                         P/ = 2∑ ��a�H�L. (#$
)$
)                                                      (18) 21 

A large G2 deviating from zero indicates that the model fits poorly as compared to the saturated 22 

model. 23 

 24 

DATA PREPARATION 25 

Pedestrian and bicyclist crashes which occurred in the City of Irvine in the period of 2007–2012 26 

were analyzed for the study. Like many other research studies (43-45), TAZs were selected as 27 

the base units, and the crash data were aggregated at the TAZ-level. Overall, there are 203 TAZs 28 

in the City. The map in Figure 1 displays the distribution of all TAZs and associated crash 29 

counts. The two transportation mode-related crashes were collected from SWITRS (California 30 

Statewide Integrated Traffic Records System) Shape file of TAZ boundary and TAZ 31 

characteristics were provided by SCAG (Southern California Association of Governments).  32 

 33 
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 1 
 2 

FIGURE 1  TAZ Map with Crash distributions in the C ity of Irvine, California.  3 

 4 

The variables used for model development and the associated descriptive statistics are 5 

shown in Table 1. The numbers of pedestrian and bicyclist crashes aggregated from 6 years were 6 

used as the dependent variables. DVMT was utilized as the exposure variable. The explanatory 7 

variables were the predictors commonly used in previous regional safety analyses which include 8 

socioeconomic, transportation-related, and environment-related factors, and so on. In addition, 9 

the distance matrix containing distances among various TAZ centroids were also collected from 10 

SCAG for the estimation of distance-based spatial random effect. Since there are 203 TAZs in 11 

the city, the matrix includes 203x202 distances. Their descriptive statistics can be found in Table 12 

1 as well.  13 

 14 

TABLE 1  Summary Statistics of Variables for TAZ’s of the City of Irvine 15 

Variables Description Mean Std. Dev. Min. Max. 
Bike Total bike-involved 

crashes (2007-2012) 
1.82 2.45 0 12 

Ped Total pedestrian-involved 
crashes (2007-2012) 

0.81 1.33 0 8 

DVMT Daily vehicle miles 
traveled 

5,4262.44 56,156.84 112.57 276,079.90 

Acre TAZ Area in acre 282.90 431.75 0.69 5,062.95 
Median Median house income ($) 48,440.78 50,635.10 0 183,347 
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Pop_den Population density by area 6.18 7.96 0 32.40 
HH_den Household density by area 2.34 3.15 0 13.62 
Emp_den Employment density by 

area 
10.34 17.43 0 121.10 

Ret_den Retail job density 0.79 2.02 0 17.45 
% age 5_17 % of population age 5-17 8.64% 8.78% 0 27% 
% age 
18_24 

% of population age 18-24 5.79% 7.42% 0 40% 

% age 
24_64 

% of population age 24-64 38.35% 36.12% 0 95% 

% age 65+ % of population age 65 or 
older 

6.25% 10.21% 0 83% 

K12 K12 student enrollment  0.39 1.00 0 5.52 
College College student 

enrollment 
0.11 1.00 0 12.59 

Int34_den Intersection density (3- 
and 4- legs) 

0.12 0.12 0 0.62 

BKlnACC Bike lane access (1=if a 
TAZ has bike lane) 

0.92 0.28 0 1 

BL_den Bike lane density 3.40 1.80 0 7.26 
Rail 1=at least one rail station 

in a TAZ 
0.01 0.10 0 1 

TTbus_D Total Bus Stop Density 0.05 0.09 0 0.53 
Exbus_D Stop density for Express 

Bus and BRT 
0.002 0.007 0 0.06 

HFLbus_D High-Frequency Bus Stop 
Density (local bus 
headway <= 20 mins) 

0.001 0.004 0 0.03 

WalkAcc Walk Accessibility  3.87 9.46 0 74.53 
% Arterial Percent of main arterial 

(45-55mph) of TAZ  
10.61% 17.33% 0 80% 

Distance Distance among TAZ 
centroids (in miles) 

4.06 2.09 0.16 11.78 

 1 

 2 

RESULTS 3 

The crash prediction models were estimated with the freeware statistical package WinBUGS (46) 4 

which sampled the estimates by employing Markov Chain Monte Carlo (MCMC) method. Two 5 

out of four models were semiparametric which utilized the Dirichlet process to allow flexibility 6 

of the intercept for all entities. Such specification supported the capability to incorporate infinite 7 

parameters based on the desired flexibility, but the truncated Dirichlet formulation was utilized 8 

to limit the number of parameters in an effort to reduce immense computational complexity 9 

associated with modeling of infinite parameters. A total of 10,000 MCMC iterations were 10 

utilized for parameter estimation after discarding first 1,000 iterations as burn-in. The crash data 11 
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for the two concerned modes fit the model specification reasonably well as reflected by the small 1 

number of iterations to reach convergence. The MCMC convergence was ensured by employing 2 

different approaches such as visual inspection of history plots, trace plots, and Gelman-Rubin 3 

diagram (47). Moreover, the accuracy of posteriors was ensured by recording the sample MC 4 

errors to be less than 5% of the associated standard deviations. In an effort to reduce the bias 5 

induced in the model estimates due to the incorporation of correlated covariates, the Harrell 6 

Miscellaneous package in R software was employed for calculation of Pearson correlation 7 

coefficient. The covariates observed to be correlated at a significance level of 0.05 were 8 

subsequently eliminated with due consideration to prevent exclusion of any potential influential 9 

variables which would result in loss of precision of estimated parameters.  10 

Modeling Results 11 

This study developed flexible models that accounted for the unobserved heterogeneity by 12 

combining the strengths of incorporating multivariate specification of dependency among crash 13 

modes, spatial random effects for the impact of neighboring TAZs, and Dirichlet process mixture 14 

for random intercept. For comparison purposes, all models were developed over the multivariate 15 

model which may be regarded as the base model to observe the potential advantages of Dirichlet 16 

models or inclusion of spatial random effects. As shown in Table 2, the posterior inferences for 17 

influential factors for all four models demonstrate their robustness to fit the multimodal crash 18 

data at the TAZ spatial scale. All four models filtered out similar significant factors that affect 19 

crash frequency for a particular mode. In the case of bicycle crashes, three variables were 20 

observed to be statistically significant, namely: K12 student enrollment, percentage of arterials, 21 

and bike-lane density for the TAZ. The TAZs with higher K12 student enrollment increases the 22 

crash risk as the instances of interaction of bicyclists with other modes increases due to more 23 

exposure. However, the similar positive correlation for bike-lane density seems counter-intuitive 24 

since the presence of bike lanes is expected to facilitate more usage of bicycles due to lower 25 

perceived risk of interaction with other modes. The possible rationale for this finding may be 26 

explained by the above expectation of lower perceived risk which may encourage bicyclists to 27 

ride more in such areas, but the corresponding higher chances of the exposure of bicyclists to 28 

vehicular traffic increase the crash risk. The negative relationship among percentage of arterial 29 

roads and bicycle crashes indicates that maybe the bicyclists tend to travel less in areas with 30 

more arterials. For the crashes pertaining to pedestrians, the college enrollment was also 31 

observed to be influential, along with other three factors shared with bicycle crashes. The 32 

increase in student population in the colleges of TAZs was observed to be negatively linked with 33 

pedestrian crashes, though the increased pedestrian activity usually associated with the presence 34 

of college students was expected to increase crash occurrence. The probable justification may be 35 

that the known presence of students influenced the vehicle drivers to be more cautious and drive 36 

sensitively, or the vehicular activity may be minimal in such areas which may help significantly 37 

reduce the possibility of interaction with pedestrians. The common significant factors (K12 38 

student enrollment, percentage of arterials, and bike-lane density) responsible for bicycle and 39 

pedestrian crashes support the joint estimation of such modes which are most vulnerable and 40 
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impacted by similar characteristics. As shown in Table 3, the heterogeneity error term 1 

demonstrated the presence of statistically significant correlation among the bicycle and 2 

pedestrian crashes which further justifies the employment of multivariate structure for joint 3 

estimation of crashes. However, the spatial random effect term exhibited the absence of a 4 

significant correlation as indicated by the covariance matrix. It may be possible that the 5 

explanatory variables incorporated for model development were sufficiently robust to account 6 

for the spatial characteristics that influence crash occurrence for the particular modes.  7 

TABLE 2 Posterior Inference for Bicyclist and Pedestrian-involved Crash counts 8 

Count Type Variables Model 1 Model 2 Model 3 Model 4 
Bicyclist Intercept -10.860 (0.243) -10.880 (0.246) -10.780 (0.248) -10.790 (0.234) 
 % age 65+ 1.532 (0.922) 1.467 (0.895) 1.413 (0.830) 1.401 (0.798) 
 K12 0.203 (0.088) 0.203 (0.091) 0.213 (0.079) 0.211 (0.074) 
 College -0.013 (0.078) -0.015 (0.077) -0.014 (0.079) -0.012 (0.075) 
 WalkAcc -0.007 (0.010) -0.008 (0.010) -0.006 (0.010) -0.007 (0.010) 
 % Arterial -3.517 (0.674) -3.529 (0.685) -3.472 (0.691) -3.399 (0.655) 
 BL_den 0.260 (0.056) 0.271 (0.057) 0.245 (0.056) 0.246 (0.056) 
Pedestrian Intercept -12.390 (0.326) -12.430 (0.357) -12.360 (0.340) -12.380 (0.346) 
 % age 65+ 1.205 (1.145) 1.192 (1.101) 1.097 (1.074) 1.131 (1.009) 
 K12 0.280 (0.104) 0.280 (0.106) 0.291 (0.095) 0.291 (0.094) 
 College -0.976 (0.567) -0.968 (0.563) -0.962 (0.562) -0.957 (0.558) 
 WalkAcc 0.009 (0.010) 0.008 (0.010) 0.010 (0.010) 0.009 (0.010) 
 % Arterial -3.826 (0.989) -3.805 (0.985) -3.727 (0.991) -3.658 (0.996) 
 BL_den 0.384 (0.068) 0.397 (0.075) 0.374 (0.069) 0.375 (0.074) 
Notes: 1. Intercept for Dirichlet Process models indicates the intercept mean from mixture points. 9 

2. Refer to Table1 for detailed description of variables 10 

3. Numbers in parentheses represent uncertainty estimates, or, posterior standard deviations 11 

4. The statistically significant variable coefficients are shown in bold. 12 

5. Model 1: Multivariate; Model 2: Multivariate Spatial; Model 3: Multivariate Dirichlet process mixture; 13 

Model 4: Multivariate Dirichlet process mixture spatial 14 

 15 

TABLE 3 Covariance matrices for the Four Alternative Models  16 

Models Modes Heterogeneity (εij) Spatial (uij) 
  Bicycle Pedestrian Bicycle Pedestrian 

Model 1 Bicycle 0.896 (0.166) 0.854 (0.166)   
 Pedestrian 0.854 (0.166) 0.890 (0.237)   

Model 2 Bicycle 0.860 (0.168) 0.827 (0.153) 0.001 (2.2x10-4) 6.7x10-5 (1.5x10-4) 
 Pedestrian 0.827 (0.153) 0.856 (0.213) 6.7x10-5 (1.5x10-4) 0.001 (2.2x10-4) 

Model 3 Bicycle 0.602 (0.200) 0.538 (0.182)   
 Pedestrian 0.538 (0.182) 0.561 (0.226)   

Model 4 Bicycle 0.507 (0.231) 0.461 (0.234) 0.001 (2.1x10-4) 7.4x10-5 (1.5x10-4) 
 Pedestrian 0.461 (0.234) 0.503 (0.270) 7.4x10-5 (1.5x10-4) 0.001 (2.2x10-4) 

Notes: 1. Numbers in parentheses represent posterior standard deviations. 17 

2. The statistically significant covariance values are shown in bold.  18 

3. Model 1: Multivariate; Model 2: Multivariate Spatial; Model 3: Multivariate Dirichlet process mixture; 19 

Model 4: Multivariate Dirichlet process mixture spatial 20 
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Evaluation Results 1 

As previously stated, the four models were evaluated from different perspectives using five 2 

evaluation criteria. The conditional predictive ordinate (CPO) was calculated to cross-validate 3 

the crash estimates and eventually obtain LPML for comparison of model fit. Unlike the 4 

traditional parametric models which usually employ DIC (deviance information criterion) for 5 

model comparison, LPML was adopted in this study as DIC is not generated by the WinBUGS 6 

due to its sensitivity to different parameterizations (28,48). The higher value of LPML is 7 

desirable as it reflects relatively superior model fit property and a difference of more than 5 8 

points among two competing models help identify the model of interest (49). As shown in Table 9 

4, the LPML values of all four models were close enough to not cross the threshold of 5 points 10 

for identification of model of interest with superior fit. However, the sample size also impacts 11 

the numerical value of LPML. Hence it may be worthwhile to record the model with highest 12 

LPML value and compare the observation with other criteria. As evident from the evaluation 13 

results, Model 3 demonstrated the best fit based on relative large LPML (-474.433), closely 14 

followed by Model 4. A Similar trend was observed for all other criteria suggesting the strong 15 

correlation among the capability of a model to fit crash data and its performance at crash 16 

predictive accuracy.  17 

Further inspection of the evaluation results reveals that the models which account for 18 

spatial correlations (Models 2 and 4) have consistently inferior performance to those with 19 

spatially structured heterogeneity (Models 1 and 3). Such phenomenon suggests that the 20 

inclusion of spatial correlation structures and the resultant increased model complexity were not 21 

compensated by expected advantage at crash prediction. The potential reason might be due to the 22 

insignificant spatial dependency among the two modal crashes as shown in Table 3. Clearly, the 23 

Dirichlet models (Models 3 and 4) outperformed the non-Dirichlet ones (Model 1 and 2) based 24 

on all five criteria suggesting the use of such flexible framework. Apart from the better 25 

predictive accuracy and model fit, another advantage associated with Dirichlet models is the 26 

capability to identify the presence of distinct subpopulations. As shown in Figure 2, the kernel 27 

posterior density plots of Dirichlet precision parameter k illustrates the closeness of the peak 28 

towards zero which reflects that the unknown density (G) of non-parametric intercept is far from 29 

the baseline distribution (G0). Similar plots for both Dirichlet models suggest their robustness 30 

and indicate that the normal assumption of intercept associated with traditional parametric 31 

models does not hold true for the TAZ level crash dataset of the current study. These findings 32 

also suggest the presence of distinct subpopulations among the crash data which was confirmed 33 

from the histogram of posterior number of latent clusters with a median of 2 clusters for most of 34 

the data. This justifies the use of Dirichlet process mixture with flexible intercept as such model 35 

specification helps more precise estimation leading to better inferences.  Contrary to the 36 

parametric models which restrict the priors to a specific distribution fixed across all entities, the 37 

latent clusters capture the multimodality due to unconstrained nature.  38 

 39 

 40 
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TABLE 4 Evaluation Results for Alternate Models 1 

Model LPML MSPE R p
2 G2

 RSS 
Model 1 -476.753 0.690 0.786 177.995 272.367 

Model 2 -477.492 0.691 0.781 179.544 278.749 

Model 3 -474.433 0.682 0.823 169.137 225.018 
Model 4 -474.831 0.687 0.823 169.998 225.291 

Note: Model 1: Multivariate; Model 2: Multivariate Spatial; Model 3: Multivariate Dirichlet process 2 

mixture; Model 4: Multivariate Dirichlet process mixture spatial 3 

 4 

 5 

(a) Kernel densities for Dirichlet Spatial (Model 4) 6 

 7 

(b) Kernel Densities for Dirichlet without Spatial (Model 3) 8 

FIGURE 2 Kernel Density Plots for Precision Parameter and Latent Clusters 9 

CONCLUSIONS AND RECOMMENDATIONS 10 

The current study contributes to the safety literature by proposing a multivariate Dirichlet 11 

process mixture spatial model and comparing its performance for crash predictions with other 12 

three competing models. This study focuses on the active transportation at TAZ level by 13 

developing a semi-parametric model that accounted for the unobserved heterogeneity by 14 

combining the strengths of incorporating multivariate specification to accommodate correlation 15 

among crash modes, spatial random effects for the impact of neighboring TAZs, and Dirichlet 16 

process mixture for random intercept. The present model structure allowed the flexibility to infer 17 

stochastic parameter from the crash data instead of a prespecified distribution. Moreover, such 18 

sophisticated structure also facilitates for identification of latent subpopulations which may 19 

escape the traditional parametric models. The FB framework allowed the flexibility to 20 

accommodate the hierarchical structure and complex correlations in the crash data to jointly 21 

model pedestrian and bicycle crashes while accounting for the spatial correlations among TAZs.   22 

All four models shared similar influential factors across both crash modes which indicated the 23 

robustness of the models. For crashes pertaining to bicycles, K12 student enrollment, percentage 24 
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of arterials, and bike-lane density for the TAZ were observed to be statistically significant at the 1 

95% confidence interval. Similar correlation among the concerned factors and pedestrian crashes 2 

was observed which indicated the advantage of joint modeling due to similar influential factors 3 

to the crash risk for the vulnerable modes. The positive correlation of K12 student enrollment 4 

with crash risk suggests the increased risk due to higher chances of physical interactions of 5 

bicyclists/pedestrians with other modes due to more exposure. However, the perceived risk 6 

appears to be the governing factor in the case of positive correlation for bike-lane density, which 7 

seems counter-intuitive. The possible explanation is that the lower perceived risk may encourage 8 

bicyclists to ride more in such areas and therefor yield higher chances of the exposure of 9 

bicyclists to vehicular traffic. A negative correlation was observed for percentage of arterial 10 

roads and bicycle crashes which suggests lesser tendency of bicyclists to travel in areas with 11 

more arterials, hence reducing the exposure to possible interactions. The pedestrian crashes were 12 

observed to reduce with an increase in student population in the colleges of TAZs. Such fact may 13 

be justified by the policies implemented in these areas for reduced or null vehicular traffic which 14 

eventually reduces the possibility of interaction with pedestrians.  15 

The heterogeneity error term demonstrated the presence of statistically significant 16 

correlation among the bicycle and pedestrian crashes while the spatial random effect term 17 

exhibited the absence of a significant correlation, which might explain why models considering 18 

the spatial random effects did not yield the expected advantages compared with their non-spatial 19 

counterparts.  In the comparison between Dirichlet and non-Dirichlet models, the former ones 20 

were consistently superior to typical multivariate ones under all criteria. These findings 21 

demonstrate the advantages associated with consideration of flexible approach, Dirichlet process 22 

mixture in the current study, based on the goodness-of-fit and predictive accuracy of estimated 23 

crash counts. Moreover, the Dirichlet models exhibited the capability to identify the latent 24 

distinct subpopulations and suggested the that the normal assumption of intercept associated with 25 

traditional parametric models does not hold true for the TAZ level crash dataset of the current 26 

study. These findings justify the development of sophisticated flexible models which generate 27 

more precise estimate due to the unrestrictive approach which eventually leads to better 28 

inferences.  29 

Based on the results, this study recommends careful consideration of spatial correlations 30 

at the macro-level of TAZs as the accommodation of such correlation structures increased the 31 

complexity without any significant advantage at model fit or predictive accuracy. The authors 32 

also recommend exploring other spatial levels and observe if the results of the current study hold 33 

true or if the spatial random effects prove beneficial. Finally, the crash dataset utilized for model 34 

development was aggregated for a six-year time period and future studies may incorporate 35 

temporal correlations and adopt disaggregated crash counts. 36 

 37 
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