Southern California Association of Governments

Regional Aviation Forecasts

Analysis of Airport Capacity Constraints
Technical Memorandum

Project Number: 60322587

Date:
August 2015
Statement of Qualifications and Limitations

This report is based upon information that was available to AECOM as of the date of its preparation. In certain circumstances, AECOM was provided with information by SCAG and other public entities and is entitled to rely upon the accuracy of such information. There are factors that may affect the recommendations contained in this report that are beyond AECOM's reasonable control or which may occur after the date of the preparation of this report. This report was prepared in accordance with a generally acceptable industry standard of care. This report and the data, information, drawings, computations, notes, renderings, or other documents or materials prepared by AECOM in connection with this report shall not be used on any other project without Consultant's written consent. Any changes made to the report, or any use of the report not specifically prescribed under agreement between the parties or otherwise expressly approved by AECOM, shall be at the sole risk of the party making such changes or adopting such use, and AECOM shall not be responsible for any damages whatsoever resulting from such use. No party other than SCAG shall have the right to rely upon the information contained in this report without the express written consent of AECOM Technical Services, Inc.

In addition, this report includes analysis and conclusions based on procedures and data contained in the Southern California Association of Government’s Regional Transportation Plan travel demand model. AECOM was provided the model and its associated data by SCAG and is entitled to rely upon the validity of the model and the accuracy of the procedures and data contained in it. Except to the extent described in this report, AECOM has not independently validated the model or verified the accuracy of the data contained in it.
Distribution List

<table>
<thead>
<tr>
<th># of Hard Copies</th>
<th>PDF Required</th>
<th>Association / Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revision Log

<table>
<thead>
<tr>
<th>Revision #</th>
<th>Revised By</th>
<th>Date</th>
<th>Issue / Revision Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AECOM Signatures

Report Prepared By: Carmen Au, AECOM

Report Reviewed By: Andrew Scanlon, AECOM

August 2015
Table of Contents

Statement of Qualifications and Limitations

1. Introduction .. 1
 1.1 Background ... 1
 1.2 Objective of Task 5 – Analysis of Airport Capacity Constraints .. 1
 1.3 Purpose of this Technical Memorandum ... 1

2. Methodology .. 1

3. Capacity Analysis .. 2
 3.1 Los Angeles International Airport (LAX) ... 2
 3.1.1 Previous Capacity Analysis for LAX .. 2
 3.1.2 Summary of LAX Historical Data ... 3
 3.1.3 LAX Airfield Capacity Analysis ... 8
 3.1.4 LAX Gate Capacity Analysis ...14
 3.1.5 LAX Overall Airport Capacity ...19
 3.2 John Wayne Airport (SNA) ... 20
 3.2.1 Background on the Settlement Agreement and the associated Capacity Limit20
 3.2.2 Summary of SNA Historical Data ...21
 3.2.3 SNA Airfield Capacity Analysis ...25
 3.3 Burbank Bob Hope Airport (BUR) ... 30
 3.3.1 Background on Development Agreement, Noise Protection, and the associated Capacity Limit 30
 3.3.2 Summary of BUR Historical Data ...31
 3.3.3 BUR Airfield Capacity Analysis ...35
 3.3.4 BUR Gate Capacity Analysis ...36
 3.3.5 BUR Overall Airport Capacity ...37
 3.4 Long Beach Airport (LGB) ... 38
 3.4.1 Background on the Settlement Agreement, and the associated Capacity Limit38
 3.4.2 Summary of LGB Historical Data ...39
 3.4.3 LGB Airfield Capacity Analysis ...42
 3.4.4 LGB Gate Capacity Analysis ...45
 3.4.5 LGB Overall Airport Capacity ...45

4. Grand Summary .. 46

Appendix A (Fleet Mix, Load Factor, and Seat Capacity by Airlines) .. 47
List of Figures

Figure 1: LAX Historical Annual Passengers .. 4
Figure 2: LAX Historical Annual Operations .. 5
Figure 3: LAX Historical Passengers per Commercial Operation ... 5
Figure 4: LAX 2013 Monthly Passengers and Commercial Operations .. 6
Figure 5: LAX Average Hourly Operations (July, 2013) .. 6
Figure 6: LAX Percentage of Operations (2006 to 2013) ... 7
Figure 7: LAX Percentage of Operations (Jan to Dec 2013) ... 8
Figure 8: LAX Runway Configuration ... 9
Figure 9: LAX Overall Airport Capacity .. 19
Figure 10: SNA Historical Annual Passengers ... 21
Figure 11: SNA Historical Annual Aircraft Operations .. 22
Figure 12: SNA Historical Annual Aircraft Operations ... 23
Figure 13: SNA Percentage of Operations (2008 to 2013) .. 24
Figure 14: SNA Percentage of Operations (Jan to Dec 2013) ... 24
Figure 15: SNA Overall Airport Capacity .. 29
Figure 16: BUR Historical Annual Passengers .. 31
Figure 17: BUR Historical Annual Aircraft Operations .. 32
Figure 18: BUR Percentage of Operations (2008 to 2013) .. 33
Figure 19: BUR Percentage of Commercial and GA Operations (2008 to 2013) .. 34
Figure 20: BUR Percentage of Operations (Jan to Dec 2013) .. 34
Figure 21: BUR Overall Airport Capacity .. 37
Figure 22: LGB Historical Annual Aircraft Operations .. 39
Figure 23: LGB Percentage of Operations (2003 to 2013) .. 41
Figure 24: LGB Percentage of Commercial Operations (2003 to 2013) ... 41
Figure 25: LGB Overall Airport Capacity .. 46

List of Exhibits

Exhibit 1: SNA Existing Terminal Layout ... 28
Exhibit 2: BUR Existing Terminal Layout .. 36
Exhibit 3: LGB Existing Terminal Layout .. 45
List of Tables

Table 1: LAX Load Factor and Seat Capacity by Categories, 2013... 7
Table 2: Aircraft Classifications...10
Table 3: Summary of Airfield Analysis for LAX – Estimated Hourly Capacity and ASV.................................13
Table 4: Summary of Airfield Analysis for LAX – Estimated Annual Passenger Volume...............................14
Table 5: Number of operations per Gate at LAX..15
Table 6: Average Seat Capacities at LAX...15
Table 7: Distribution of Gates by Terminal and ADG at LAX - SPAS Alts 1 & 2 Layout (With MARS Positions)16
Table 8: Distribution of Gates by Terminal and ADG at LAX - SPAS Alts 1 & 2 Layout (Without MARS Positions) ...16
Table 9: Distribution of Gates by Terminal and ADG at LAX - SPAS Alt 3 Layout (With MARS Positions)17
Table 10: Distribution of Gates by Terminal and ADG at LAX - SPAS Alt 3 Layout (Without MARS Positions)17
Table 11: Distribution of Gates by Terminal and ADG at LAX - SPAS Alt 4 Layout (With MARS Positions)18
Table 12: Distribution of Gates by Terminal and ADG at LAX - SPAS Alt 4 Layout (Without MARS Positions)18
Table 13: SNA Load Factor and Seat Capacity by Categories, 2013 ...23
Table 14: Summary of Airfield Analysis for SNA – Estimated Hourly Capacity and ASV.................................26
Table 15: Summary of Airfield Analysis for SNA – Estimated Annual Passenger Volume.................................27
Table 16: Number of operations per Gate at SNA..28
Table 17: Average Seat Capacities at SNA...28
Table 18: BUR Load Factor and Seat Capacity by Categories, 2013 ...33
Table 19: Summary of Airfield Analysis for BUR – Estimated Annual Passenger Volume35
Table 20: LGB Historical Passenger Volume..39
Table 21: LGB Load Factor and Seat Capacity by Categories, 2013 ...40
Table 22: Summary of Airfield Analysis for LGB Runway 12/30 – Estimated Hourly Capacity and ASV.................43
Table 23: Summary of Airfield Analysis for LGB – Estimated Annual Passenger Volume..................................44
Table 24: Summary of Capacity Analysis ...46

Table A-1: LAX Fleet Mix, Load Factor, and Seat Capacity by Airlines, 2013...47
Table A-2: SNA Fleet Mix, Load Factor, and Seat Capacity by Airlines, 2013..53
Table A-3: BUR Fleet Mix, Load Factor, and Seat Capacity by Airlines, 2013...54
Table A-4: LGB Fleet Mix, Load Factor, and Seat Capacity by Airlines, 2013...55
1. Introduction

1.1 Background

The Southern California Association of Governments (SCAG) awarded Contract Number 14-013-C1 to AECOM Technical Services, Inc. to provide professional services for the development of new 2040 regional aviation demand forecasts and a new airport ground access element for the 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS). Aviation demand includes air passengers, operations, and air cargo. The scope of services also includes development of air passenger trip tables for incorporation in the regional travel demand model. The demand allocation process will reflect the varying attributes at the different airports in the regional system, including travel times to airports, physical capacity constraints at constrained airports, and future flight frequencies, and portfolios.

1.2 Objective of Task 5 – Analysis of Airport Capacity Constraints

The objective of this analysis is to develop a planning-level physical capacity limit for each of the four capacity constrained urban airports - Los Angeles International Airport (LAX), John Wayne Airport (SNA), Burbank Bob Hope Airport (BUR), and Long Beach Airport (LGB. Since the time horizon of this analysis is 2040, only the major components of each airport—the airfield and the terminal gates—are evaluated, based on current airport plans. Some airports in the SCAG region operate under legal or policy constraints that may limit the number of passengers that they can accommodate. This analysis does not consider such legal or policy constraints.

1.3 Purpose of this Technical Memorandum

This technical memorandum describes the methodology and conclusions of the airport capacity constraints analysis. Each of the four capacity constrained airports is described separately.

2. Methodology

The overall airport capacity is defined by the most constraining component of an airport. The airport is a complex system made up of different components through which passengers and aircraft flow in a sequential order. Each component of the airport system has a throughput capacity level, which is typically a function of the physical and operational characteristics of the component. For example, the number of runways, the number of gates, and the operating procedures determine the throughput or processing rate of the airport. The capacity of the overall airport system is determined by the capacity of its weakest component, i.e., the controlling facility.

Only the capacity of the airfield and terminal gates were analyzed in this study. The methodology used is summarized below:

- Identify the controlling facility that constitute the overall capacity-constraint for each airport based on the available Airport Master Plans or similar study for each airport, and the feedback from meetings with the airports.
- Review the capacity limit identified in previous reports and studies.
The following approaches were used for the review of the airfield and terminal capacity limits. The configuration of the airfield and terminal at each airport was identified from available Airport Master Plans and similar studies. The ultimate airport capacity is the combined effect of the two limits.

Methodology used to Determine Airfield Capacity:
- Based on the ultimate airport layout plan from each airport with the feasible ultimate runway configuration; estimated the annual service volume (ASV) utilizing processes and formulas prescribed in FAA AC 150/5060-5 Airport Capacity and Delay.
- Estimated the percentage of commercial operations, load factor and seating capacity from historical data and future trends.
- Estimated the maximum annual passenger volume from the above results.

Methodology used to Determine Terminal Capacity:
- Based on the ultimate airport layout plan from each airport with the feasible ultimate terminal gate (active and remote) configuration; analyzed the current gate utilization from historical data (e.g. design day schedule and gate chart, average number of turns per gate, fleet mix, seating capacity), and estimated the maximum gate capacity by maximizing the usage of each gate in the ultimate terminal layout plan.

In most cases, a series of sensitivity analyses were conducted around the airfield and terminal capacities. In these sensitivity analyses, input assumptions were varied to develop a range of possible capacity limits for each airport. Since this is a planning-level study, no attempt was made to identify a most likely scenario from among the scenarios analyzed. Because of the wide range of assumptions considered, in some cases, the low end of the range identified for an airport may be below the historical peak passenger volume at that airport.

3. Capacity Analysis
The following subsections present the capacity analysis performed for each of the four constrained airports.

3.1 Los Angeles International Airport (LAX)
LAX is the 6th busiest airport worldwide in terms of passengers, 4th in terms of aircraft operations, and 14th worldwide in air cargo tonnage. In 2014, 70.7 million passengers traveled through LAX and the total aircraft operations were 637,000.

3.1.1 Previous Capacity Analysis for LAX

Capacity in Previous RTP
In the aviation system planning conducted for SCAG’s 2001 RTP, a physical capacity analysis was conducted for LAX, including the capacities of the facility’s curbside, terminal, terminal gate and runway systems. It determined that the overriding constraint that governs the physical capacity of LAX was its runway system, and the LAX runway capacity was estimated at 78 million annual passengers (MAP). This capacity constraint was adopted for the 2001

1 Airports Council International (ACI), March 2014.
RTP, and carried over into the 2004 RTP. The SCAG's 2001 RTP noted that Los Angeles World Airports (LAWA) has estimated the existing runway capacity of LAX at about 86 MAP. Also, if the LAX capacity analysis was updated using SCAG’s updated 2030 regional aviation forecast, which accounts for increased aircraft load factors after 9/11 and more very large aircraft in the future fleet mix, the estimate of existing runway capacity at LAX would be above 78 MAP.²

Capacity in the LAX Master Plan

A passenger limit of 78.9 MAP was established as the “practical capacity” of LAX in a Settlement Agreement between LAWA and surrounding communities and other parties arising from lawsuits over the latest update of the LAX Master Plan³. The 78.9 MAP limit was estimated based on the physical (runway) capacity for the 2004 LAX Master Plan Alternative D. The Master Plan also included three other alternatives: Alternatives A, B, and C. Alternatives A and B included a fifth runway and would accommodate 97.9 MAP. Alternative C was designed to test the limit of the market to serve passenger and cargo demand within the limit of a four-runway system. The projected capacity for Alternative C was 89.6 MAP.

Capacity in the Specific Plan Amendment Study (SPAS)

As a result of lawsuits challenging the LAX Master Plan, a Settlement Agreement was reached that requires LAWA to proceed with a Specific Plan Amendment Study (SPAS) to identify potential alternative designs, technologies, and configurations that would provide solutions to the problems that certain projects (designated as “Yellow Light Projects”) were designated to address. LAWA completed the SPAS Final Report, dated January 2013, which was based on the plan for the modernization and improvement of LAX in a manner that is designed for a practical capacity of 78.9 MAP and no more than 153 passenger gates.⁴

3.1.2 Summary of LAX Historical Data

LAX Historical Passenger Volume

The annual passenger volume at LAX has been increasing since the economic turmoil that ended in 2009. In 2014, LAX had a record high 70.7 million passengers, exceeding the historical peak of 67.3 million experienced in 2000. Figure 1 presents the annual passenger volumes from 1994 to 2014.

² 2004 Regional Transportation Plan, Technical Appendix D-6: Aviation, SCAG.
³ 2012-2035 Regional Transportation Plan, Appendix - Aviation and Airport Ground Access, SCAG.
⁴ LAX Specific Plan Amendment Study Final Report, January 2013, LAWA.
LAX Historical Operations

The total annual operations at LAX has also been recovering since the economic downturn, but the rate of increase is less than the rate of the annual passenger volume increases. The total annual operations in 2014 (637,000) are still below the historical peak in 2000 (783,000). The air carrier operations in 2014 (531,000) are also below the historical peak in 2000 (566,000). There has been a decrease in commercial commuter operations in the last three years. This trend reflects the increase in passengers per operation (e.g. increase in load factor and/or size of commercial carriers) which is the result of changes in airline operations to maximize utilization. The capacity analysis for this study is based on the data in recent years to reflect the latest pattern in LAX.

Figure 2 presents the annual aircraft operations from 1994 to 2014. Figure 3 illustrates the passengers per commercial operation from 2006 to 2014.

LAX Peak Month, Design Day, and Peak Hour

The 2013 monthly passenger and operation detail is presented in Figure 4. The peak month for passengers and operations is July. The peak month passenger volume in July was approximately 9.7 percent of the annual total in 2013. The commercial operations in the peak month constitute approximately 9.2 percent of the total annual commercial operations. In view of LAX’s facilities and role in the regional aviation system, it is anticipated that the
nature of the current traffic patterns (i.e. mix of short-, medium-, and long-haul stage lengths) will be similar in future years. Thus historical data serves as a reasonable guide to future hourly passenger patterns.

Figure 4: LAX 2013 Monthly Passengers and Commercial Operations

![Figure 4: LAX 2013 Monthly Passengers and Commercial Operations](image)

Historical hourly operation profile for the average day of the peak month (ADPM) in July 2013 was analyzed. The estimated average hourly commercial (excluding air cargo, general aviation, and military) operations are presented in **Figure 5**.

Figure 5: LAX Average Hourly Operations (July, 2013)

![Figure 5: LAX Average Hourly Operations (July, 2013)](image)

Based on the historical data between 2009 and 2013, the following demand ratios are estimated for LAX:

- **Daily Demand Ratio (D)** - the ratio of annual demand (aircraft operations) to average daily demand during the peak month. D was estimated to be approximately 342.

- **Hourly Demand Ratio (H)** - the ratio of average daily demand to average peak hour demand during the peak month. H was estimated to be approximately 15.7.

LAX Fleet Mix, Load Factor, and Seat Capacity

The characteristics of the fleet mix, load factors and seat capacity for the airlines operating at LAX were analyzed and included in Appendix A. **Table 1** presents a summary according to different aircraft categories including passenger flights such as scheduled carrier, commuter carrier, charter, and other non-passenger flights.

Table 1: LAX Load Factor and Seat Capacity by Categories, 2013

<table>
<thead>
<tr>
<th>Aircraft Category</th>
<th>Load Factor</th>
<th>Average Seat Capacity</th>
<th>No. of operations recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled Carriers</td>
<td>82.10%</td>
<td>173</td>
<td>473,255</td>
</tr>
<tr>
<td>Commuter Carriers</td>
<td>70.06%</td>
<td>41</td>
<td>84,888</td>
</tr>
<tr>
<td>Charter Carriers</td>
<td>60.29%</td>
<td>105</td>
<td>881</td>
</tr>
<tr>
<td>Other non-passenger flights</td>
<td>N/A</td>
<td>N/A</td>
<td>24,509</td>
</tr>
<tr>
<td>Total (Commercial Operations)</td>
<td>583,513</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: U.S. DOT T100 Database 2013; AECOM analysis.

Notes:
1. Scheduled carriers include aircraft with passenger services and more than 60 seats;
2. Commuters are scheduled passenger services with less than or equal to 60 seats;
3. Non-scheduled passenger services are provided by charter carriers.

The historical proportion of commercial operations at LAX are presented in Figures 6 and 7. **Figure 6** summarizes the percentages from 2006 to 2013. **Figure 7** summarizes the monthly totals in 2013.
3.1.3 LAX Airfield Capacity Analysis

Description of the Runway Operating Configurations

The runway system at LAX consists of two sets of dual parallel runways. The north runway complex consists of Runways 6L-24R (8,925 feet long and 150 feet wide), and 6R-24L (10,285 feet long and 150 feet wide). There is 700 feet runway centerline-to-centerline separation between the north complex runways. The close separation of the two parallel north runways preclude independent operations during weather conditions where cloud ceilings are less than 1,000 feet and visibility is less than 3 miles. Each end of Runways 6R-24L and 6L-24R is equipped with Category I instrument landing systems. Runway 6R-24L is primarily used for departing aircraft and Runway 6L-24R is primarily used for arriving aircraft.

The south runway complex consists of Runways 7L-25R (12,091 feet long and 150 feet wide), and 7R-25L (11,095 feet long and 200 feet wide). The separation between these two runways is 800 feet. Each end of Runway 7L-25R and Runway 7R is equipped with Category I instrument landing systems. Runway 25L is equipped with a Category IIIb instrument landing system. Runway 7L-25R is used primarily for departing aircraft. Runway 7R-25L is used primarily for arriving aircraft.

The separation between the north inboard runway 6R-24L and south inboard runway 7L-25R is more than 4,500 feet, which allows for independent operations.

With reference to the SPAS, there are four basic runway operating configurations:

- Visual flight rules (VFR) with visual approaches – West Flow (occurs 69.2 percent of the time)
- VFR with simultaneous instrument landing (ILS) approaches – West Flow (occurs 24.6 percent of the time)
- Instrument meteorological conditions (IMC)/Instrument flight rules (IFR) with instrument approaches – West Flow (occurs 4.1 percent of the time)
• VFR with simultaneous ILS approaches – East Flow (occurs 2.1 percent of the time)5

The four operating configurations are illustrated in Figure 8.

Figure 8: LAX Runway Configuration

![LAX Runway Configuration Image]

Source: LAX SPAS Report, Appendix F-2, Figure 1, July 2012.

Peak Hour Throughput and Annual Service Volume (ASV)

FAA Advisory Circular (AC) 150/5060-5, Airport Capacity and Delay, provides the methodology for estimating airport capacities. FAA AC 150/5060-5 provides formulas to estimate annual service volume (ASV). ASV is a reasonable estimate of an airport’s annual capacity. It accounts for differences in runway use, aircraft mix, weather conditions, fleet mix, and other factors that would be encountered over a year’s time. The capacity calculations for long-range planning as provided in Chapter 3 of FAA AC 150/5060-5 have been adopted for the airfield capacity analysis for LAX. Reference was also made to FAA Report No. FAA-RD-74-124, Techniques for Determining Airport Airside Capacity and Delay.

Definition of Terms

The key terms used in analyzing airport capacity and discussed in this section are defined below:

- **Aircraft Mix** - is the relative percentage of operations conducted by each of four classes of aircraft according to size (A, B, C and D). Table 2 identifies the physical characteristics of the four aircraft size classifications and their relationship to terms used in wake turbulence standards. It should be noted that

5 LAX SPAS Report, Appendix F-2, July 2012
since the FAA Air Traffic Control Handbook (FAA Order 7110.65) applies wake turbulence procedures to aircraft operating behind heavy jets and B757s, the B757 is considered a heavy aircraft for capacity planning purposes although its maximum certificated takeoff weight is less than 300,000 pounds.

Table 2: Aircraft Classifications

<table>
<thead>
<tr>
<th>Aircraft Class</th>
<th>Maximum Certified Takeoff Weight MTOW (lbs)</th>
<th>Number of Engines</th>
<th>Wake Turbulence Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12,500 or less</td>
<td>Single</td>
<td>Small (S)</td>
</tr>
<tr>
<td>B</td>
<td>12,500 or less</td>
<td>Multi</td>
<td>Small (S)</td>
</tr>
<tr>
<td>C</td>
<td>12,500 – 300,000</td>
<td>Multi</td>
<td>Large (L)</td>
</tr>
<tr>
<td>D</td>
<td>Over 300,000</td>
<td>Multi</td>
<td>Heavy (H) / B757</td>
</tr>
</tbody>
</table>

Source: FAA AC 150/5060-5, Airport Capacity and Delay.

- **Capacity** - (throughput capacity) is a measure of the maximum number of aircraft operations (takeoffs and landings) which can be accommodated on the airport or airport component in an hour. Since the capacity of an airport component is independent of the capacity of other components, it can be calculated separately. This analysis deals with the airfield component.

- **Mix Index** - is a mathematical expression. It is the percent of Class C aircraft plus three times the percent of Class D aircraft, and is written % (C+3D).

- **Percent Arrivals (PA)** - is the ratio of arrivals to total operations and is computed as follows:

 \[
 PA = \frac{A + \frac{1}{2} (T\&G)}{A + DA + \frac{1}{2} (T\&G)} \times 100
 \]

 where:

 A = number of arriving aircraft in the hour
 DA = number of departing aircraft in the hour
 T\&G = number of touch and go’s in the hour

- **Percent Touch and Go's (T&G)** - is the ratio of landings with an immediate take-off to total operations and is computed as follows:

 \[
 T\&G = \frac{\frac{1}{2} (T\&G)}{A + DA + \frac{1}{2} (T\&G)} \times 100
 \]

 where:

 A = number of arriving aircraft in the hour
 DA = number of departing aircraft in the hour
 T&G = number of touch and go’s in the hour

 Touch-and-go operations are normally associated with training. The number of these operations usually decreases as the number of air carrier operations increase, as demand approaches runway capacity, or as weather conditions deteriorate.

Having established the definitions of terms used in the capacity analysis, the following subsections deal with the calculation of hourly runway capacities. Hourly capacity was calculated for VFR and IFR conditions.
Assumptions and Inputs for Airfield Capacity Analysis

Six sensitivity tests are conducted in the runway capacity analysis for LAX to account for the variation in assumptions.

Sensitivity Tests 1 through 3 – FAA AC 150/5050-5 Analytical Method

Following are the major assumptions and inputs applied to estimate the hourly capacity:

- **Runway Configuration.** The runway configuration is based on the description above and matched with the runway-use diagrams for VFR and IFR conditions in the AC. The appropriate runway-use diagram identified are diagram number 33, 35, and 42 with corresponding Figures 3-20, 3-21 and 2-26 in the AC for different VFR configurations; and diagram number 35 with Figure 3-58 in the AC for IFR conditions. During the VFR West Flow condition with visual approaches (occurs 69.2 percent of the time), Runways 24R and 25L are mainly for arrivals and Runways 24L and 25R are mainly for departures. Mixed mode is only used occasionally. Since these two configurations reference different runway-use diagram in the AC, three sensitivity tests are assumed to split the 69.2 percent for the two configurations.

- **Mix Index.** Data for determining mix index was based on an analysis of the U.S. DOT T100 database for 2013. Based on this data set, aircraft operating on the runways between 12,500 and 300,000 pounds (excluding the B757) account for 73 percent of all operations on the runways. These are categorized as aircraft class C. Aircraft with maximum certificated takeoff weights of 300,000 pounds or more and B757 account for approximately 27 percent of operations. These are categorized as aircraft class D. The mix index is estimated to be approximately 154.

- **Percent Arrivals.** Percent of arrivals is estimated to be 50 percent of the total operations.

- **Percent Touch-and-Go’s.** There is negligible touch-and-go operation at LAX. The touch-and-go factor (T) is 1 for both VFR and IFR operations.

- **Location of Exit Taxiways.** The distance from the threshold at the approach end of the runway to the exit taxiways are measured for each runway configuration. The exit factor (E) is determined from the figure identified for each runway configuration.

The hourly capacity base (C^*) is determined from the figure identified for each runway configuration based on the mix index and percent arrivals. The hourly capacity is estimated as follows:

- **Hourly Capacity of the Runway Component** = $C^* \times T \times E$

The weighted hourly capacities (C_w) for Sensitivity Tests 1 through 3 are calculated by the percent of time each runway configuration is in use and the corresponding hourly capacities.

The annual service volume (ASV) is calculated using the daily (D) and hourly (H) demand ratios described above. The formula used to calculate ASV is:

- **ASV** = $C_w \times D \times H$
Sensitivity Test 4 – SPAS
The SPAS Final Report January 2013, includes airside simulation for four alternative airfield configurations using the 2025 design day flight schedule. All of the alternatives are based on the four-runway system. The all-weather average peak hour throughput is between 133 to 135 operations. SIMMOD was used for the airside simulation analysis under the SPAS.

Sensitivity Test 5 – 2004 Master Plan
The peak hour throughput for four-runway system represented by Alternative D in the LAX Master Plan is 144 operations for VFR Visual West Flow, 135 operations for VFR ILS West Flow and VFR East Flow, 131 operations for IFR West Flow, 141 operations for all weather average by 2015. These peak hour throughputs are the results of detailed airside simulations in the SIMMOD model carried out under the LAX Master Plan study.

Sensitivity Test 6 – FAA Airport Capacity Benchmark Report 2004
The FAA Airport Capacity Benchmark Report 2004 (CB Report) indicates that the capacity benchmark for LAX is 137 to 148 flights per hour in optimum weather for the current and most commonly used runway configuration. The benchmark rate decreases to 126 to 132 flights per hour in marginal conditions, and to 117 to 124 flights per hour in IFR conditions. Throughput may be less when ceiling and visibility are low, or if other runway configurations are used. These benchmark rates do not always represent balanced operations. It also mentions that planned technological improvements at LAX would increase the benchmark rate to 173 flights per hour for optimum and marginal conditions, and 128 flights per hour for IFR conditions. Planned technological improvements include: Cockpit Display of Traffic Information (CDTI) -Enhanced Flight Rules (CEFR), which allows suitably equipped aircraft to maintain visual separation from other aircraft and continue visual approaches even in marginal weather conditions; and advanced Traffic Management Advisor (TMA) / Area Navigation (RNAV) to improve delivery accuracy and help LAX consistently utilize their available capacity. FAA indicated in the Airport Capacity Benchmark Report that their information should serve as a reference only and subject to detailed analysis.

Similarly, the weighted hourly capacities for Sensitivity Tests 4 to 6 are calculated by the percent of time each runway configuration is in use and the corresponding hourly capacities. The annual service volume (ASV) is calculated from the same daily (D) and hourly (H) demand ratios.

Table 3 summarizes the assumptions for the airfield capacity analysis, the weighted hourly capacity, and the ASV for the six sensitivity tests.

The estimated hourly capacity for LAX is approximately 135 to 149 operations.

The ASV ranges from 724,200 to 802,500 operations per year.

6 LAX Specific Planning Amendment Study Final Report, January 2013; Appendix F-2 Tables 10 and 12, Corrected Tables 14 and 16.
7 LAX Master Plan, April 2004, Tables E-6 and E-7.
8 Airport Capacity Benchmark Report 2004, FAA.
<table>
<thead>
<tr>
<th>Capacity Element</th>
<th>VFR VISUAL WEST FLOW</th>
<th>VFR ILS West Flow</th>
<th>VFR ILS East Flow</th>
<th>IFR West FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival</td>
<td>All Row mixed mode</td>
<td>All Row mixed mode</td>
<td>All Row mixed mode</td>
<td>All Row mixed mode</td>
</tr>
<tr>
<td>Departure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denotes Occasional Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Utilization
- Sensitivity Test 1: 55.4%
- Sensitivity Test 2: 62.3%
- Sensitivity Test 3: 69.2%
- Sensitivity Tests 4, 5, & 6: 69.2%

Aircraft Mix Index (C+3D): 121 to 180

Exit Range (feet): 5,500 to 7,500

No. of Exits (N) within range
- 2

Exit Factor (E)
- 0.97

Arrival %: 50%

Hourly Capacity (FAA AC)
- Sensitivity Tests 1 to 3: 145
- Sensitivity Test 4: 135
- Sensitivity Test 5: 144
- Sensitivity Test 6: 137 to 148

Hourly Capacity (SPAS)
- Sensitivity Test 4: 136
- Sensitivity Test 5: 135

Hourly Capacity (2004 Master Plan)
- Sensitivity Test 5: 135

Hourly Capacity (Airport Capacity Benchmark Report)
- Sensitivity Test 6: 126 to 132
- Sensitivity Test 6 (CB Rpt): 138

Weighted Hourly Capacity (Cw)
- 149
- 147
- 144
- 135
- 135
- 141
- 138

Annual Service Volume (ASV)
- Sensitivity Test 1: 802,500
- Sensitivity Test 2: 788,000
- Sensitivity Test 3: 773,500
- Sensitivity Test 4 (SPAS): 724,200
- Sensitivity Test 6 (CB Rpt): 742,900

Estimated Hourly Capacity: 135 to 149

Estimated ASV: 724,200 to 802,500

Maximum Annual Passenger Volume

The annual passenger volume is estimated from the range of ASV as shown in Table 4. Three scenarios were considered:

- **Scenario 1**: The mix of operations for scheduled, commuter, and charter carriers assumes the historical annual pattern (see Figure 6). The average passengers per aircraft was based on the historical average seat capacity and load factor for each category of carriers (see Table 1).
- **Scenario 2**: The mix of operations for scheduled, commuter, and charter carriers follows the historical pattern in the peak month, July (see Figure 7). The average passengers per aircraft is the same as Scenario 1.
- **Scenario 3**: The mix of operations is the maximum of Scenarios 1 and 2. The load factor is increased to 85 percent. This represents the high scenario.

Table 4: Summary of Airfield Analysis for LAX – Estimated Annual Passenger Volume

<table>
<thead>
<tr>
<th>Mix of Operations</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled Carriers</td>
<td>77.9%</td>
<td>78.7%</td>
<td>78.7%</td>
</tr>
<tr>
<td>Commuter Carriers</td>
<td>13.0%</td>
<td>12.9%</td>
<td>13.0%</td>
</tr>
<tr>
<td>Charter Carriers</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Total Commercial</td>
<td>91.0%</td>
<td>91.6%</td>
<td>91.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Passengers per Operations</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled Carriers</td>
<td>142</td>
<td>142</td>
<td>147</td>
</tr>
<tr>
<td>Commuter Carriers</td>
<td>29</td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td>Charter Carriers</td>
<td>63</td>
<td>63</td>
<td>89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Annual Passenger Volume</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity Test 1</td>
<td>91,839,000</td>
<td>92,697,000</td>
<td>96,579,000</td>
</tr>
<tr>
<td>Sensitivity Test 2</td>
<td>90,180,000</td>
<td>91,022,000</td>
<td>94,834,000</td>
</tr>
<tr>
<td>Sensitivity Test 3</td>
<td>89,520,000</td>
<td>89,348,000</td>
<td>93,089,000</td>
</tr>
<tr>
<td>Sensitivity Test 4 (SPAS)</td>
<td>82,878,000</td>
<td>83,653,000</td>
<td>87,156,000</td>
</tr>
<tr>
<td>Sensitivity Test 5 (2004 MP)</td>
<td>86,735,000</td>
<td>87,546,000</td>
<td>91,212,000</td>
</tr>
<tr>
<td>Sensitivity Test 6 (CB Rpt)</td>
<td>85,018,000</td>
<td>85,813,000</td>
<td>89,407,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Maximum Annual Passenger Volume</th>
<th>Estimated Airfield Capacity: 82.9 to 96.6 MAP</th>
</tr>
</thead>
</table>

Source: AECOM analysis.

It should be noted that these maximum passenger volumes are very dependent on 1) the size of aircraft (e.g. number of seats) and 2) load factors. Changes in these elements will have a direct impact on the estimated annual passenger volume for the airfield.

In summary, the maximum airfield capacity is estimated to be approximately **82.9 MAP**, which is based on Sensitivity Test 4 with SPAS assumptions, to **96.6 MAP** based on Sensitivity Test 1.

3.1.4 LAX Gate Capacity Analysis

The purpose of the gate capacity analysis is to investigate whether the capacity of the LAX terminal gates will be the constraint for the ultimate capacity of the airport. Recent studies, including the SCAG RTP and the LAX SPAS, are based on the limit of 153 gates at LAX due to the Settlement Agreement. However, this gate capacity analysis focuses on the physical and operational constraints instead of the legal constraint and includes a scenario with more than 153 gates.
The maximum number of operations (departures and arrivals) per gate for different Airplane Design Groups (ADGs) is summarized in Table 5.

Table 5: Number of operations per Gate at LAX

<table>
<thead>
<tr>
<th>Item</th>
<th>ADG I/II</th>
<th>ADG III</th>
<th>ADG IV</th>
<th>ADG V</th>
<th>ADG VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Daily Operations per gate</td>
<td>16</td>
<td>16</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Source: Meetings with Los Angeles World Airports (LAWA), October 2014 to January 2015.

The assumptions on average seat capacities for different ADGs are given in Table 6.

Table 6: Average Seat Capacities at LAX

<table>
<thead>
<tr>
<th>Item</th>
<th>ADG I/II</th>
<th>ADG III</th>
<th>ADG IV</th>
<th>ADG V</th>
<th>ADG VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Seat per Aircraft (Seat Capacity)</td>
<td>49</td>
<td>142</td>
<td>191</td>
<td>299</td>
<td>458</td>
</tr>
</tbody>
</table>

Source: U.S. DOT T-100 database 2013. AECOM analysis; and meetings with Los Angeles World Airports (LAWA), October 2014 to January 2015.

The average load factor is estimated to be between 80 to 82 percent as noted in SPAS. The adopted load factor for this analysis was 81.3 percent.

The distribution of gates by terminal and ADG based on Alternatives 1 to 4 in the SPAS are summarized in Tables 7 to 12. Scenarios with and without multiple aircraft ramp system (MARS) are included.
Table 7: Distribution of Gates by Terminal and ADG at LAX – SPAS Alternatives 1 & 2 Layout (With MARS Positions)

<table>
<thead>
<tr>
<th>Terminals</th>
<th>ADG I/II</th>
<th>ADG III</th>
<th>ADG IV</th>
<th>ADG V</th>
<th>ADG VI</th>
<th>Total Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 0</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Terminal 1</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Terminal 2</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Terminal 3</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Terminal 4</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 5</td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 6</td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 7</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Terminal 8</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Commuter Positions</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midfield Satellite Concourse</td>
<td>20</td>
<td>7</td>
<td>2</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBIT</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>6</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>27</td>
<td>63</td>
<td>41</td>
<td>8</td>
<td>153</td>
</tr>
</tbody>
</table>

Source: Meetings with Los Angeles World Airports (LAWA), October 2014 to January 2015.

Table 8: Distribution of Gates by Terminal and ADG at LAX - SPAS Alternatives 1 & 2 Layout (Without MARS Positions)

<table>
<thead>
<tr>
<th>Terminals</th>
<th>ADG I/II</th>
<th>ADG III</th>
<th>ADG IV</th>
<th>ADG V</th>
<th>ADG VI</th>
<th>Closed</th>
<th>Total Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 0</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Terminal 1</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Terminal 2</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Terminal 3</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Terminal 4</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Terminal 5</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Terminal 6</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Terminal 7</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Terminal 8</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Commuter Positions</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midfield Satellite Concourse</td>
<td>1</td>
<td>19</td>
<td>2</td>
<td>7</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBIT</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td></td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>23</td>
<td>41</td>
<td>51</td>
<td>10</td>
<td>14</td>
<td>153</td>
</tr>
</tbody>
</table>

Source: Meetings with Los Angeles World Airports (LAWA), October 2014 to January 2015.
Table 9: Distribution of Gates by Terminal and ADG at LAX - SPAS Alternative 3 Layout (With MARS Positions)

<table>
<thead>
<tr>
<th>Terminals</th>
<th>ADG I/II</th>
<th>ADG III</th>
<th>ADG IV</th>
<th>ADG V</th>
<th>ADG VI</th>
<th>Total Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Terminal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Terminal 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Terminal 4</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 5</td>
<td></td>
<td></td>
<td>11</td>
<td>2</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 6</td>
<td></td>
<td></td>
<td>11</td>
<td>2</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 7</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Terminal 8</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Commuter Positions</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Midfield Satellite Concourse</td>
<td>5</td>
<td>27</td>
<td>1</td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>North Linear Terminal</td>
<td>5</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>TBIT</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>25</td>
<td>84</td>
<td>16</td>
<td>5</td>
<td>153</td>
</tr>
</tbody>
</table>

Source: Meetings with Los Angeles World Airports (LAWA), October 2014 to January 2015.

Table 10: Distribution of Gates by Terminal and ADG at LAX - SPAS Alternative 3 Layout (Without MARS Positions)

<table>
<thead>
<tr>
<th>Terminals</th>
<th>ADG I/II</th>
<th>ADG III</th>
<th>ADG IV</th>
<th>ADG V</th>
<th>ADG VI</th>
<th>Closed</th>
<th>Total Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Terminal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Terminal 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Terminal 4</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Terminal 5</td>
<td>10</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Terminal 6</td>
<td>10</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Terminal 7</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Terminal 8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Commuter Positions</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Midfield Satellite Concourse</td>
<td>2</td>
<td>18</td>
<td>2</td>
<td>11</td>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>North Linear Terminal</td>
<td>1</td>
<td>12</td>
<td></td>
<td>7</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>TBIT</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>11</td>
<td>34</td>
<td>47</td>
<td>10</td>
<td>28</td>
<td>153</td>
</tr>
</tbody>
</table>

Source: Meetings with Los Angeles World Airports (LAWA), October 2014 to January 2015.
Table 11: Distribution of Gates by Terminal and ADG at LAX - SPAS Alternative 4 Layout (With MARS Positions)

<table>
<thead>
<tr>
<th>Terminals</th>
<th>ADG I/II</th>
<th>ADG III</th>
<th>ADG IV</th>
<th>ADG V</th>
<th>ADG VI</th>
<th>Total Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 1</td>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Terminal 2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Terminal 3</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Terminal 4</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 5</td>
<td></td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 6</td>
<td></td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 7</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Terminal 8</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Commuter Positions</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Midfield Satellite Concourse</td>
<td>19</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>TBIT</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>35</td>
<td>63</td>
<td>33</td>
<td>8</td>
<td>153</td>
</tr>
</tbody>
</table>

Source: Meetings with Los Angeles World Airports (LAWA), October 2014 to January 2015.

Table 12: Distribution of Gates by Terminal and ADG at LAX - SPAS Alternative 4 Layout (Without MARS Positions)

<table>
<thead>
<tr>
<th>Terminals</th>
<th>ADG I/II</th>
<th>ADG III</th>
<th>ADG IV</th>
<th>ADG V</th>
<th>ADG VI</th>
<th>Closed</th>
<th>Total Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 1</td>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Terminal 2</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Terminal 3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Terminal 4</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 5</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 6</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Terminal 7</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Terminal 8</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Commuter Positions</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Midfield Satellite Concourse</td>
<td>1</td>
<td>20</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>TBIT</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>26</td>
<td>38</td>
<td>47</td>
<td>11</td>
<td>17</td>
<td>153</td>
</tr>
</tbody>
</table>

Source: Meetings with Los Angeles World Airports (LAWA), October 2014 to January 2015.
The maximum daily gate capacity is estimated from the different gate distributions (see Tables 7 to 12), maximum operations per gate, average seat capacities, and load factor. The daily capacity is converted to the annual capacity with the daily demand ratio ‘D’ described above.

In summary, the maximum gate capacity is approximately **85 to 104 MAP** \((\sum (Table\ 5 \times Table\ 6 \times Table\ 7) \times Load\ Factor \times D) \) based on the SPAS Alternatives 1 and 2 with MARS positions.

3.1.5 LAX Overall Airport Capacity

The overall/ultimate airport capacity is obtained by combining the scenarios for the airfield and the gate arrangement. The overall capacity for LAX is approximately **82.9 to 96.6 MAP** with airfield capacity representing the constraining factors (**Figure 9**).

Figure 9: LAX Overall Airport Capacity

![LAX Overall Airport Capacity Chart](image-url)

- **96.6 MAP** (upper limit)
- **82.9 MAP** (lower limit)
3.2 John Wayne Airport (SNA)

SNA is owned by the County of Orange and is operated as a self-supporting enterprise. SNA served over nine million passengers in 2014 and reaches more than 20 nonstop destinations in the United States, Mexico, and Canada. It is the only commercial airport in Orange County and one of the two airports in Orange County to accommodate general aviation. It is served by two fixed based operators and is home to more than 400 general aviation aircraft.

3.2.1 Background on the Settlement Agreement and the associated Capacity Limit

A Federal court settlement was signed in 1985 by the County of Orange, the City of Newport Beach, the Airport Working Group (AWG), and Stop Polluting Our Newport (SPON) to formalize the consensus reached between the County of Orange and the local communities on the nature and extent of airport improvements and defined operational and capacity limitations on those improvements. The 2003 Amendment of the 1985 Agreement allowed SNA to increase passenger levels to 10.3 MAP (through December 31, 2010) and then to 10.8 MAP (through December 31, 2015) with a maximum of 85 flights per day. In addition, the amendment allowed for the addition of new Jet bridges (not to exceed 20 total).\(^9\)

Since early 2012, the four signatories of the 1985 Settlement Agreement have been discussing a second extension of the Settlement Agreement. The parties have reached agreement on the definition of a “Proposed Project” and project alternatives to be analyzed pursuant to the California Environmental Quality Act (CEQA). In order to ensure that the types of noise and access restrictions established by the 1985 Settlement Agreement remain grandfathered under the Airport Noise and Capacity Act of 1990, the Proposed Project included in the Draft Environmental Impact Report (DEIR), issued May 2014, contemplates an amendment to the 1985 Settlement Agreement that does not further “reduce or limit aircraft operations or affect aircraft safety.” According to the DEIR, the Proposed Project would extend the term of the Settlement Agreement through December 31, 2030. It would gradually increase the number of regulated Class A commercial Average Daily Departures (ADDs)\(^10\) and the number of passenger departing and arriving annually. The maximum allowable is 12.5 MAP and 95 Class A ADDs in the 2026 through 2030, subject to conditions described in the DEIR.\(^11\)

The Proposed Project under the DEIR also assumed no additional passenger loading bridges would be allowed through December 31, 2020.\(^12\) Should additional gates or modifications to any airport facilities be proposed at a subsequent time, separate environmental study in compliance to relevant regulations and environmental statutory would be required.

The Final EIR and the Settlement Agreement Amendment were approved by the Orange County Board of Supervisors on September 30, 2014.

The legal constraints from the Settlement Agreement at SNA serve as reference information only for this capacity study. The capacity analysis described below focuses on the physically capability of SNA in accommodating the operation and passenger forecasts.

\(^9\) Regional Transportation Plan 2012-2035, Aviation and Airport Ground Access, SCAG April 2012
\(^10\) The ADDs at SNA were divided into three “classes” based on the noise characteristics of departing aircraft. The Class A flights are the noisiest. The next quietest class of ADDs was designated as Class AA. The quietest class is Class E. The Class E flights do not have a maximum number of flights allowed because they are below the regulatory noise levels established in EIR 508 (i.e., 86.0 dB SENEL).
\(^11\) John Wayne Airport Settlement Agreement Amendment, Environmental Impact Report, Draft May 2014
\(^12\) Ibid
3.2.2 Summary of SNA Historical Data

SNA Historical Passenger Volume

Total passengers through SNA peaked in 2007, at nearly 9.98 MAP. Since 2007, annual passenger volume tapered to 8.61 MAP in 2011, where it then increased to 9.23 MAP in 2013, and 9.39 MAP in 2014. Historical data is presented in [Figure 10](#).

![Figure 10: SNA Historical Annual Passengers](image)

Source: John Wayne Airport Settlement Agreement Amendment EIR, April 2014.
SNA Historical Operations

Air carrier operations in SNA have fluctuated within an approximately 10,000 operation range since 2003, with the low experienced in 2011 (82,425 air carrier operations) and the high experienced in 2007 (92,601 air carrier operations). It is noted that 2013 passenger levels of 9.23 MAP is very close to the 2004 levels of 9.27 MAP; however, due to increased load factors and fleet mix size, air carrier operations are over 5,000 less in 2013 than in 2004. Commuter and general aviation operations have significantly declined at SNA in recent years. Figure 11 presents the historical operations data for SNA.

![Figure 11: SNA Historical Annual Aircraft Operations](source: John Wayne Airport Settlement Agreement Amendment EIR, April 2014).

SNA Peak Month, Design Day and Peak Hour

August is historically the peak month for SNA. With reference to the Settlement Agreement Amendment EIR, the peak month passengers have ranged from 9.2 to 9.9 percent of the annual total and have averaged 9.4 percent of annual passengers over the past decade. The commercial operations in the peak month constitute approximately 8.7 percent of the total annual operations on average. In view of SNA’s facilities and role in the regional aviation system, it is anticipated that the nature of the current traffic patterns (i.e. mix of short, medium, and long haul stage lengths) will be similar in future years and that historical data thus serves a reasonable guide to future years hourly passenger patterns.13

Historical hourly operation profile for the peak month in the historical highest MAP, i.e. August 2007, is analyzed. The average hourly commercial and general aviation operations are presented in Figure 12.

Figure 12: SNA Historical Annual Aircraft Operations

Based on the historical data between 2009 and 2013, the following demand ratios were estimated for SNA:

- **Daily Demand Ratio (D)** - the ratio of annual demand (aircraft operations) to average daily demand during the peak month and for SNA. D is estimated to be approximately 357.

- **Hourly Demand Ratio (H)** - the ratio of average daily demand to average peak hour demand during the peak month and for SNA. H is estimated to be approximately 12.2.

SNA Fleet Mix, Load Factor, and Seat Capacity

The characteristics of the fleet mix, load factors, and average seat capacity for the airlines operating at SNA were analyzed and included in Appendix A. **Table 13** presents a summary according to different aircraft categories including passenger flights such as commercial carrier, commuter carrier, and other non-passenger flights.

<table>
<thead>
<tr>
<th>Aircraft Category</th>
<th>Load Factor</th>
<th>Average Seat Capacity</th>
<th>No. of Operations Recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Carriers</td>
<td>79.2%</td>
<td>143</td>
<td>80,776</td>
</tr>
<tr>
<td>Commuter Carriers</td>
<td>66.4%</td>
<td>43</td>
<td>2,174</td>
</tr>
<tr>
<td>Other non-passenger flights</td>
<td>N/A</td>
<td>N/A</td>
<td>716</td>
</tr>
<tr>
<td>Total (Commercial Operations)</td>
<td></td>
<td>83,666</td>
<td></td>
</tr>
</tbody>
</table>

Source: U.S. DOT T100 Database 2013; AECOM analysis.

Notes: 1. Commercial carriers include aircraft with passenger services and more than 70 seats.
2. Commuter are scheduled passenger services with less than or equal to 70 seats.
The historical proportion of commercial operations at SNA are presented in Figures 13 and 14. Figure 13 summarizes the percentages from 2008 to 2013. Figure 14 summarizes the monthly totals in 2013.

Figure 13: SNA Percentage of Operations (2008 to 2013)

Source: John Wayne Airport (http://www.ocair.com/newsroom/news/airportstats.aspx); and AECOM analysis.

Figure 14: SNA Percentage of Operations (Jan to Dec 2013)

Source: John Wayne Airport (http://www.ocair.com/newsroom/news/airportstats.aspx); and AECOM analysis.
3.2.3 SNA Airfield Capacity Analysis

Description of the Runway Operating Configurations

The existing runway system at SNA consists of two parallel runways: the primary Runway 2L/20R is 5,701 feet long while the secondary Runway 2R-20L is only 2,887 feet long. The secondary Runway is not equipped for instrument approach procedures. The centerlines of the runways are separated by 500 feet and does not allow for operation of simultaneous arrivals and departures under VFR. The short secondary runway offers some operational benefits for smaller aircraft that enhances capacity under VFR conditions. During periods of IFR, operations at SNA are basically limited to the primary runway on which the airlines operate.

Peak Hour Throughput and Annual Service Volume (ASV)

The hourly runway capacity during VFR and IFR conditions and ASV derived in accordance with the FAA AC 150/5060-5 and the methodology described previously is given in Table 14.

Three sensitivity tests are included in the analysis based on different percentages of VFR and IFR conditions. Sensitivity Test 1 assumes most of time (95 percent) is in VFR condition. Sensitivity Test 2 assumes 70 percent of time is in VFR condition. Sensitivity Test 3 is estimated from FAA Air Traffic Activity System (ATADS) data between 2003 and 2013, and assumes 52.8 percent of time in VFR condition.
Table 14: Summary of Airfield Analysis for SNA – Estimated Hourly Capacity and ASV

<table>
<thead>
<tr>
<th>Capacity Element</th>
<th>VFR</th>
<th>IFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Utilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separation between Runway 2L-20R and 1R-19L < 700 feet. No simultaneous operations</td>
<td>95%</td>
<td>5%</td>
</tr>
<tr>
<td>Sensitivity Test 1</td>
<td>70%</td>
<td>30%</td>
</tr>
<tr>
<td>Sensitivity Test 2</td>
<td>52.8%</td>
<td>47.2%</td>
</tr>
<tr>
<td>Sensitivity Test 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Mix Index (C+3D)</td>
<td>41</td>
<td>104</td>
</tr>
<tr>
<td>Touch-and-go Factor (T)</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>Exit Range (feet)</td>
<td></td>
<td>3,000 to 5,500</td>
</tr>
<tr>
<td>No. of Exits (N) within range</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Exit Factor (E)</td>
<td>0.84</td>
<td>0.86</td>
</tr>
<tr>
<td>Arrival %</td>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>Hourly Capacity (FAA AC)</td>
<td>66</td>
<td>45</td>
</tr>
<tr>
<td>Weighted Hourly Capacity (Cw)</td>
<td></td>
<td>Estimated Hourly Capacity: 56 to 65</td>
</tr>
<tr>
<td>Sensitivity Test 1</td>
<td>64.95</td>
<td></td>
</tr>
<tr>
<td>Sensitivity Test 2</td>
<td>59.7</td>
<td></td>
</tr>
<tr>
<td>Sensitivity Test 3</td>
<td>56.09</td>
<td></td>
</tr>
<tr>
<td>Annual Service Volume (ASV)</td>
<td></td>
<td>Estimated ASV: 244,400 to 283,000</td>
</tr>
<tr>
<td>Sensitivity Test 1</td>
<td>283,000</td>
<td></td>
</tr>
<tr>
<td>Sensitivity Test 2</td>
<td>260,100</td>
<td></td>
</tr>
<tr>
<td>Sensitivity Test 3</td>
<td>244,400</td>
<td></td>
</tr>
</tbody>
</table>

Source: John Wayne Airport Settlement Agreement Amendment EIR, April 2014; and AECOM analysis.
Maximum Annual Passenger Volume
The annual passenger volume is estimated from the range of ASV as shown in Table 15. Three scenarios were conducted:

- Scenario 1: The mix of operations for commercial and commuter carriers assumes the historical pattern in December 2013 (see Figure 14). The average passengers per aircraft was based on the historical average seat capacity and load factor for each category of carriers (see Table 13).
- Scenario 2: The mix of operations for commercial and commuter carriers follows the historical average between 7am and 11pm on an average day of the peak month given in the Settlement Agreement Amendment EIR (see Figure 12). The average passenger per aircraft is the same as Scenario 1.
- Scenario 3: The mix of operations for commercial and commuter carriers follows the historical record at the peak hour on an average day of the peak month given in the Settlement Agreement Amendment EIR (see Figure 12). The load factor was increased to 85 percent. This represents the high scenario.

Table 15: Summary of Airfield Analysis for SNA – Estimated Annual Passenger Volume

<table>
<thead>
<tr>
<th>Mix of Operations</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Carriers</td>
<td>34.39%</td>
<td>40.59%</td>
<td>53.99%</td>
</tr>
<tr>
<td>Commuter Carriers</td>
<td>0.96%</td>
<td>1.11%</td>
<td>1.47%</td>
</tr>
<tr>
<td>Total Commercial</td>
<td>35.35%</td>
<td>41.70%</td>
<td>55.46%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Passengers per Operations</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Carriers</td>
<td>113</td>
<td>113</td>
<td>122</td>
</tr>
<tr>
<td>Commuter Carriers</td>
<td>29</td>
<td>29</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Maximum Passengers</th>
<th>Sensitivity Test 1</th>
<th>Sensitivity Test 2</th>
<th>Sensitivity Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity Test 1</td>
<td>11,104,000</td>
<td>13,104,000</td>
<td>18,724,000</td>
</tr>
<tr>
<td>Sensitivity Test 2</td>
<td>10,206,000</td>
<td>12,044,000</td>
<td>17,209,000</td>
</tr>
<tr>
<td>Sensitivity Test 3</td>
<td>9,590,000</td>
<td>11,317,000</td>
<td>16,170,000</td>
</tr>
</tbody>
</table>

It should be noted that these maximum passenger volumes are very dependent on 1) the size of aircraft (e.g. number of seats) and 2) load factors. Changes in these elements will have a direct impact on the estimated annual passenger volume for the airfield.

In summary, the potential maximum airfield capacity for SNA is estimated to be approximately 9.6 to 18.7 MAP. However, as noted above, in 2007, SNA accommodated almost 10 MAP, so the lower end of this range is not a plausible capacity limit.
3.2.4 SNA Gate Capacity Analysis

The existing SNA terminal includes twenty air carrier gates (Gates 2 to 21) with passenger loading bridges and six ground loading gates (Gates 1A, 1B, 1C, 22a, 22B and 22C) for commuter aircraft. For the twenty gates with passenger loading bridges, thirteen of them are ADG IV gates designed to accommodate the B757, and seven are ADG III gates. The existing terminal layout is shown in Exhibit 1.

Exhibit 1: SNA Existing Terminal Layout

![Exhibit 1: SNA Existing Terminal Layout](source: Google Earth, Imagery Date: April 2013)

The maximum number of operations (departures and arrivals) per gate for different Airplane Design Groups (ADGs) is summarized in Table 16.

<table>
<thead>
<tr>
<th>Item</th>
<th>ADG I/II</th>
<th>ADG III</th>
<th>ADG IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Daily Operations per gate</td>
<td>16</td>
<td>16</td>
<td>10</td>
</tr>
</tbody>
</table>

Source: Meetings with SNA; AECOM analysis.

The assumptions on average seat capacities for different ADGs are given in Table 17. Seat capacity for ADG II is based on CRJ-700; ADG III is based on the new B737 MAX 8 dual class arrangement\(^{14}\); ADG IV is based on B757.

Table 17: Average Seat Capacities at SNA

<table>
<thead>
<tr>
<th>Item</th>
<th>ADG I/II</th>
<th>ADG III</th>
<th>ADG IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Seat per Aircraft (Seat Capacity)</td>
<td>66</td>
<td>162</td>
<td>185</td>
</tr>
</tbody>
</table>

Source: Meetings with SNA; AECOM analysis.

The average load factor is assumed to be 85 percent\(^{15}\) in the gate analysis.

Based on these assumptions, the existing twenty passenger boarding bridge gates and six commuter ground loading gates would have a maximum throughput of approximately 16 MAP

\[\sum (\text{Table 11} \times \text{Table 12} \times \text{Number of Gates for each ADG}) \times \text{Load Factor} \times D \].

3.2.5 SNA Overall Airport Capacity

The overall/ultimate airport capacity is obtained by combining the scenarios for the airfield and the gate arrangement. The overall capacity for SNA is approximately 9.6 to 16 MAP with the airfield capacity representing the constrained factor on the lower limit and terminal capacity representing the upper limit (Figure 15). However, as noted above, in 2007, SNA accommodated almost 10 MAP, so the lower end of this range is not a plausible capacity limit.

\(^{15}\) FAA Aerospace Forecast 2014 to 2034 estimated the future load factor for domestic commercial air carrier to be 84.7 percent by 2034.
3.3 Burbank Bob Hope Airport (BUR)

BUR in Burbank is a very convenient airport for its local service area comprising the cities of Burbank, Glendale, and Pasadena, with good access to and from Los Angeles and the San Fernando Valley. Scheduled service is provided by Alaska Airlines, Delta Air Lines, jetBlue Airways, Southwest Airlines, United Airlines, SeaPort Airlines, and US Airways, with frequent schedules along the west coast and connecting flights across the entire country.

The airport was privately owned and operated as a commercial service airport until 1978, when it was purchased by the Burbank-Glendale-Pasadena Airport Authority (the Authority), a public agency.

In 2014, there were 118,500 total annual operations and 3.9 million total passengers.

3.3.1 Background on Development Agreement, Noise Protection, and the associated Capacity Limit

The Authority and the City of Burbank in February 2005 concluded an agreement aimed at charting a course for airport facilities and nighttime noise abatement efforts. As part of the original development agreement, the Authority agreed to not seek expansion of the existing airport terminal, add additional aircraft parking gates, or construct a new terminal. In exchange, the City of Burbank agreed to maintain existing City rules and regulations, including zoning and governing development at the airport.

The development agreement, including the prohibition on expanding the existing terminal, was effective until June 2012. The prohibition against initiating any planning process for a new terminal extended until March 2015. There are ongoing discussions on exploring options when the development agreement expires and on ways to establish a consensus between the Authority and the City of Burbank for joint planning for the future of BUR and its surrounding area.

The location of the existing terminal does not meet current FAA safety standards, and the FAA has strongly recommended that the BUR relocate the terminal to a location farther from the runways and taxiways. Based on the information gathered in the meeting with BUR in October 2014, a potential replacement terminal would have the same number of gates (14) as the existing terminal and very likely to serve the same fleet. However, there has been considerable public opposition to the replacement terminal and the various parties involved in the issue are currently at a stalemate.

There is a voluntary nighttime curfew restricting scheduled airlines departures or arrivals between 10pm and 7am at BUR. This voluntary curfew does not apply to general aviation aircraft. In 2009, the FAA rejected the Airport’s Part 161 application for a mandatory nighttime curfew.

The SCAG’s 2001 RTP estimated the capacity for BUR at 9.4 MAP based on terminal gate capacity. The 2004 RTP increased BUR’s physical capacity to 10.7 MAP based on the assumption of three new remote terminal gates. However, the terminal gate capacity was lowered to 9.4 MAP in the 2008 RTP since the BUR airport staff determined that the remote aircraft parking gates assumed in the 2004 RTP were no longer available for aviation uses.

18 Ibid.
19 Ibid.
20 2008 Regional Transportation Plan: Aviation and Airport Ground Access Report, SCAG.
3.3.2 Summary of BUR Historical Data

BUR Historical Passenger Volume
Total passengers through BUR peaked in 2007, at over 5.9 MAP. Since 2007, annual passenger volume tapered to 3.84 MAP in 2013, where it then increased slightly to 3.86 MAP in 2014. **Figure 16** presents the annual passenger volumes from 2003 to 2014.

![Figure 16: BUR Historical Annual Passengers](source: Burbank Bob Hope Airport, http://www.burbankairport.com/home/about-airport/abouttheairport.html.)
BUR Historical Operations

Air carrier operations in BUR have decreased continuously from the peak 72,000 in 2007 to 46,000 in 2014. The combined air carrier and air taxi operations peaked during the period between 2005 and 2007 with 90,000 to 91,000 operations, and dropped to 61,000 in 2014. General aviation operations have significantly increased at BUR from 34,000 in 2007, to 69,000 in 2012. Figure 17 presents the historical operations data for BUR.

![Figure 17: BUR Historical Annual Aircraft Operations](source: Burbank Bob Hope Airport, http://www.burbankairport.com/home/about-airport/abouttheairport.html)

BUR Peak Month, Design Day, and Peak Hour

The historically the peak month for BUR varies from year to year. The number of operations in the peak month was between 9,800 and 12,300 since 2007.

Based on the historical data from the FAA Aviation System Performance Metrics (ASPM) data between 2009 and 2013, the following demand ratios were estimated for BUR:

- **Daily Demand Ratio (D)** - the ratio of annual demand (aircraft operations) to average daily demand during the peak month and for BUR. D is estimated to be approximately 343.

- **Hourly Demand Ratio (H)** - the ratio of average daily demand to average peak hour demand during the peak month and for BUR. H is estimated to be approximately 11.4.
BUR Fleet Mix, Load Factor, and Seat Capacity

The characteristics of the fleet mix, load factors, and average seat capacity for the airlines operating at BUR were analyzed and included in Appendix A. Table 18 presents summarized summary according to different aircraft categories including passenger flights such as air carriers, air taxi, and other non-passenger flights.

Table 18: BUR Load Factor and Seat Capacity by Categories, 2013

<table>
<thead>
<tr>
<th>Aircraft Category</th>
<th>Load Factor</th>
<th>Average Seat Capacity</th>
<th>No. of operations recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Carriers</td>
<td>69.6%</td>
<td>137</td>
<td>37,589</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>46.7%</td>
<td>20</td>
<td>11,693</td>
</tr>
<tr>
<td>Other non-passenger flights</td>
<td>N/A</td>
<td>N/A</td>
<td>2,035</td>
</tr>
<tr>
<td>Total (Commercial Operations)</td>
<td>51,317</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: U.S. DOT T100 Database 2013; and AECOM Analysis.
Notes: 1. Air carriers include aircraft with passenger services and more than 60 seats.
2. Air taxi are passenger services with less than or equal to 60 seats.

The historical proportion of commercial operations at BUR are presented in Figures 18 and 20. Figures 18 and 19 summarize the percentages from 2008 to 2013 and from 2003 to 2013, respectively. Figure 20 summarizes the monthly totals in 2013.

Figure 18: BUR Percentage of Operations (2008 to 2013)

Figure 19: BUR Percentage of Commercial and GA Operations (2008 to 2013)

Figure 20: BUR Percentage of Operations (Jan to Dec 2013)

3.3.3 BUR Airfield Capacity Analysis

Description of the Runway Operating Configurations

BUR is served by two intersecting runways. The longer, primary runway, (15-33) is 6,885 feet long and 150 feet wide. The shorter, crosswind runway, (8-26) is 5,802 feet long and 150 feet wide. Each of the runways also has a parallel taxiway, and there are connecting taxiways to enable cross-field movement.

Peak Hour Throughput and Annual Service Volume (ASV)

An FAA study concluded that between 50 and 55 hourly operations can be conducted at BUR. The ASV was estimated based on this range of hourly capacity and the above-mentioned demand ratios (D and H). The ASV for BUR is approximately 195,300 to 214,900.

Maximum Annual Passenger Volume

The annual passenger volume was estimated from the range of ASV as shown in Table 19. Three scenarios were considered:

- Scenario 1: The mix of operations for air carriers and air taxi assumes the historical annual pattern in 2013 (see Figures 16 and 17). i.e. 50 percent commercial operations. The average passenger per aircraft was based on the historical average seat capacity and load factor for each category of carriers (see Table 18).
- Scenario 2: The mix of operations for air carriers and air taxi carriers follows the highest monthly percentage for commercial operations (see Figure 18). i.e. 54 percent commercial operations. The average passenger per aircraft is the same as Scenario 1.
- Scenario 3: The mix of operations for commercial and commuter carriers adopts the 2032 forecast operations from the Airport Planning Forecast given in Appendix F of the BUR 14 CFR part 150 Study Noise Exposure Map Update, April 2013. i.e. 56 percent commercial operations. The load factor was increased to 85 percent. This represents the high scenario.

Table 19: Summary of Airfield Analysis for BUR – Estimated Annual Passenger Volume

<table>
<thead>
<tr>
<th>Mix of Operations</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Carrier</td>
<td>38.00%</td>
<td>40.50%</td>
<td>46.00%</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>12.00%</td>
<td>13.50%</td>
<td>10.00%</td>
</tr>
<tr>
<td>Total Commercial</td>
<td>50.00%</td>
<td>54.00%</td>
<td>56.00%</td>
</tr>
<tr>
<td>Average Passengers per Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Carrier</td>
<td>95</td>
<td>95</td>
<td>116</td>
</tr>
<tr>
<td>Air Taxi</td>
<td>9</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>Estimated Maximum Annual Passengers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAA Study (50 operations per hour)</td>
<td>7,299,000</td>
<td>7,792,000</td>
<td>10,794,000</td>
</tr>
<tr>
<td>FAA Study (55 operations per hour)</td>
<td>8,032,000</td>
<td>8,574,000</td>
<td>11,877,000</td>
</tr>
</tbody>
</table>

21 Meeting with BUR, October 2014.
It should be noted that these maximum passenger volumes are very dependent on 1) the size of aircraft (e.g. number of seats) and 2) load factors. Changes in these elements will have a direct impact on the estimated annual passenger volume for the airfield.

In summary, the potential maximum airfield capacity for BUR was estimated to be approximately 7.3 to 11.9 MAP.

3.3.4 BUR Gate Capacity Analysis

The existing BUR terminal includes 14 air carrier gates: Gates A1 to A9 at Terminal A, and Gates B1 to B5 at Terminal B. All of the 14 gates are designated for ADG III aircraft. The existing terminal layout is shown in Exhibit 2.

Exhibit 2: BUR Existing Terminal Layout

![Exhibit 2: BUR Existing Terminal Layout](image)

Source: Google Earth, Imagery Date: April 2013.

The maximum number of operations (departures and arrivals) per gate is approximately 15 based on the discussion with the airport.

The future ADG III aircraft fleet references B737 MAX. The seat capacity for B737 MAX 8 is approximately 162 passengers for dual class to 175 passengers for single class configuration. B737 MAX 9 seats approximately 180 passengers in dual class and 204 passengers for single class configuration. A seat capacity of 200 was assumed in the gate analysis for BUR.

The average load factor is assumed to be 85 percent in the gate analysis.

22 Meeting with BUR, October 2014.
23 Ibid.
25 FAA Aerospace Forecast 2014 to 2034 estimated the future load factor for domestic commercial air carrier to be 84.7 percent by 2034.
Based on these assumptions, the 14-gate terminal arrangement would have a maximum capacity of approximately 12 MAP \((\text{Number of operations per gate} \times \text{Number of gates} \times \text{Seat Capacity} \times \text{Load Factor} \times D)\).

3.3.5 BUR Overall Airport Capacity

The overall/ultimate airport capacity is obtained by combining the scenarios for the airfield and the gate arrangement. The overall capacity for BUR is approximately **7.3 to 11.9 MAP** with the airfield capacity representing the constraining factor (Figure 21).

Figure 21: BUR Overall Airport Capacity

![Figure 21: BUR Overall Airport Capacity](image-url)
3.4 Long Beach Airport (LGB)

LGB is located in the City of Long Beach, Los Angeles County. LGB has five runways, including two sets of parallel runways forming a square and a diagonal runway. The longest runway is 10,000 feet, which is the only runway used for commercial operations.

The airport serves commercial carriers, general aviation, and air cargo operations. Total operations are approximately 275,500 in 2013, including a significant number of general aviation activities (241,500 operations). Total passenger volume was 3.2 million in 2012, and 2.94 million in 2013. Scheduled service is provided dominantly by jetBlue Airways (over 80 percent of enplaned passengers). US Airways, Delta Air Lines, and Alaska Airlines also provide some scheduled passenger services at LGB.26

3.4.1 Background on the Settlement Agreement, and the associated Capacity Limit

In the early 1980’s, the City of Long Beach imposed a restriction of 15 air carrier operations/day at LGB, which was determined to be consistent with holding noise levels in impacted neighborhoods under the State-mandated 65 Community Noise Equivalent Level (CNEL) contour. A Federal judge subsequently ruled in favor of the airlines, lifting the cap incrementally to 41 air carrier departures/day. This constraint is still in force, by virtue of a 1995 Settlement Agreement between the city and the airlines that was prompted by a 1991 Federal circuit of appeals decision to reverse all previous major legal findings. The 41 departures/day cap (25 commuter additional flights are also allowed) equates to a range of potential passenger service, depending on the aircraft types, load factors, and number of cargo flights assumed (there currently are five all-cargo flights). The city’s noise ordinance for the airport was grandfathered by ANCA, which precludes new local restrictions on Stage 3 aircraft.27

According to the SCAG’s 2004 RTP, the flight restriction at LGB translates to 3.0 MAP, making conservative assumptions. These include assuming the existing air carrier fleet mix, a nominal 60 percent load factor, and that the 25 allowable commuter flights are divided between regional jets (10 flights at 70 passengers seats per aircraft) and smaller turbo props (15 flights at 25 seats per aircraft). The 3.0 MAP figure for LGB was used for the Constrained Variation in the 2004 RTP. Making more liberal assumptions increasing the forecast total for LGB to 3.8 MAP, which was used for the Preferred Aviation Plan. These include assuming a 70 percent overall load factor, and that all the 25 commuter flights would be regional jets in 2030.28

According to the LGB Terminal Improvement EIR, terminal area improvements are being designed to accommodate 41 airline flights and 25 commuter flights per day. This flight level was anticipated to result in approximately 4.2 MAP being served at the airport. There are provisions in the Airport Noise Compatibility Ordinance allowing the number of flights to be increased if the air carrier flights and commuter flights operate below their respective CNEL limits; however, the 4.2 MAP limit has been used in the growth forecasts.29 The 2008 RTP and 2012 RTP adopt 4.2 MAP as the estimated capacity for LGB.

27 2004 RTP Technical Appendix D-6 Aviation, SCAG.
28 2004 RTP Technical Appendix D-6 Aviation, SCAG.
29 2012 RTP Aviation and Airport Ground Access Appendix, SCAG, April 2012.
3.4.2 Summary of LGB Historical Data

LGB Historical Passenger Volume

Table 20 summarizes the enplaned passengers and total passengers at LGB since 2011, based on the available monthly airport activity report received from the airport.

Table 20: LGB Historical Passenger Volume

<table>
<thead>
<tr>
<th>Year</th>
<th>Enplaned Passengers</th>
<th>Total Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1,549,744</td>
<td>3,115,433</td>
</tr>
<tr>
<td>2012</td>
<td>1,607,801</td>
<td>3,206,910</td>
</tr>
<tr>
<td>2013</td>
<td>1,474,334</td>
<td>2,942,873</td>
</tr>
<tr>
<td>2014 (Jan to Sep)</td>
<td>1,098,451</td>
<td>2,191,152</td>
</tr>
</tbody>
</table>

LGB Historical Operations

Figure 22 presents the historical operations for LGB based on FAA Air Traffic Activity Data System (ATADS) data. Total operations peaked in 2007 at 396,000 operations, and decreased to 275,500 operations in 2013. General aviation activity is significant at LGB. General aviation operations also peaked in 2007 with 357,500 operations, and decreased to 241,500 operations in 2013. Commercial operations peaked in 2008 with 44,000 operations, and dropped to 33,000 operations in 2013.

Figure 22: LGB Historical Annual Aircraft Operations

Source: FAA ATADS; and AECOM analysis.
LGB Peak Month, Design Day, and Peak Hour

The historically the peak month for LGB normally occurs in the summer season between April and September. The average number of commercial operations (air carrier and air taxi) in the peak month is between 3,100 and 3,700 from 2003 and 2013, except in 2008, when 5,300 commercial operations were experienced.

Based on the historical data from the FAA ATADS data between 2009 and 2013, the following demand ratios were estimated for LGB:

- **Daily Demand Ratio (D)** - the ratio of annual demand (aircraft operations) to average daily demand during the peak month and for LGB. D is estimated to be approximately 339.

- **Hourly Demand Ratio (H)** - the ratio of average daily demand to average peak hour demand during the peak month and for LGB. H is estimated to be approximately 11.7.

LGB Fleet Mix, Load Factor, and Seat Capacity

The characteristics of the fleet mix, load factors, and average seat capacity for the airlines operating at LGB were analyzed and included in Appendix A. **Table 21** presents summarized summary according to different aircraft categories including passenger flights such as air carriers, air taxi, and other non-passenger flights.

<table>
<thead>
<tr>
<th>Aircraft Category</th>
<th>Load Factor</th>
<th>Average Seat Capacity</th>
<th>No. of operations recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Carriers</td>
<td>81.3%</td>
<td>136</td>
<td>23,062</td>
</tr>
<tr>
<td>Air Taxi (include commuters)</td>
<td>84.0%</td>
<td>57</td>
<td>3,946</td>
</tr>
<tr>
<td>Other non-passenger flights</td>
<td>N/A</td>
<td>N/A</td>
<td>826</td>
</tr>
<tr>
<td>Total (Commercial Operations)</td>
<td></td>
<td></td>
<td>27,834</td>
</tr>
</tbody>
</table>

Source: U.S. DOT T100 Database 2013; and AECOM analysis.
Notes: 1. Air carriers include aircraft with passenger services and more than 60 seats.
2. Air taxi are passenger services with less than or equal to 60 seats.

The historical proportion of commercial operations at LGB from 2003 through 2013 are presented in **Figure 23**. The percentage of general aviation operations in the recent five years was approximately 87 percent. The percentage of commercial operations was approximately 12.6 percent during the same period.

Figure 24 presents the split between air carrier and air taxi (including commuter) within commercial operations. The recent five-year and three-year average percentages of air carrier were estimated to be 80.9 percent and 82.9 percent of total commercial operations respectively. Commercial commercials mainly operate from the longest runway (12/30). Commercial operations will use Runway 7L/25R only when Runway 12/30 is closed.
Figure 23: LGB Percentage of Operations (2003 to 2013)

Gradually decreasing percentage of GA operations. Recently five-year average is approximately 87% of operations.

Gradually increasing percentage of commercial operations. Recently five-year average is approximately 12.6% of operations.

Source: FAA ATADS; and AECOM analysis.

Figure 24: LGB Percentage of Commercial Operations (2003 to 2013)

Gradually increasing percentage of air carrier operations. Recently five-year and three-year averages are 80.9% and 82.9% of total commercial operations respectively.

Source: FAA ATADS; and AECOM analysis.
3.4.3 LGB Airfield Capacity Analysis

Description of the Runway Operating Configurations

LGB is served by two sets of parallel runways forming a square and a diagonal runway. The 5-runway system is described below:

- Runway 7L/25R – 6,191 feet long by 150 feet wide
- Runway 7R/25L – 5,421 feet long by 150 feet wide
- Runway 12/30 – 10,003 feet long by 200 feet wide
- Runway 16L/34R – 3,330 feet long by 75 feet wide
- Runway 16R/34L – 4,470 feet long by 75 feet wide

Only one runway (12/30) is used for commercial operations. Runway 7L/25R is used for commercial operations only when Runway 12/30 is closed. Therefore the estimation of airfield capacity in terms of annual passenger volume was based on a one-runway system for commercial operations.

Peak Hour Throughput and Annual Service Volume (ASV)

The hourly capacity for Runway 12/30 during VFR and IFR conditions and ASV derived in accordance with the FAA AC 150/5060-5 and the methodology described previously is given in Table 22.

Approximately 90 percent of the operations are in north flow direction using Runway 30. Ten percent of operations are in south flow direction using Runway 12.

Three Sensitivity Tests were included in the analysis based on different percentages of VFR and IFR conditions. Sensitivity Test 1 assumed most of time (94 percent) is in VFR condition. Sensitivity Test 2 assumed 88 percent of time is in VFR condition. Sensitivity Test 3 assumed 82 percent of time is in VFR condition.

As shown in Table 22, the hourly capacity of Runway 12/30 was estimated to be between 53 and 54 operations. The ASV was estimated based on this range of hourly capacity and the above-mentioned demand ratios (D and H). The ASV for Runway 12/30 is approximately 211,200 to 215,100 annual operations.
Table 22: Summary of Airfield Analysis for LGB Runway 12/30 – Estimated Hourly Capacity and ASV

<table>
<thead>
<tr>
<th>Capacity Element</th>
<th>North Flow</th>
<th>South Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operations on Runway 30</td>
<td>Operations on Runway 12</td>
</tr>
<tr>
<td>VFR / IFR</td>
<td>VFR</td>
<td>IFR</td>
</tr>
<tr>
<td>Configur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity Test 1</td>
<td>85%</td>
<td>5%</td>
</tr>
<tr>
<td>Sensitivity Test 2</td>
<td>80%</td>
<td>10%</td>
</tr>
<tr>
<td>Sensitivity Test 3</td>
<td>75%</td>
<td>15%</td>
</tr>
<tr>
<td>Aircraft Mix Index (C+3D)</td>
<td></td>
<td>81 to 120</td>
</tr>
<tr>
<td>Touch-and-go Factor (T)</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>Exit Range (feet)</td>
<td></td>
<td>5,500 to 6,500</td>
</tr>
<tr>
<td>No. of Exits (N) within range</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Exit Factor (E)</td>
<td>0.94</td>
<td>0.92</td>
</tr>
<tr>
<td>Arrival %</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Hourly Capacity (FAA AC)</td>
<td>55</td>
<td>47</td>
</tr>
<tr>
<td>Weighted Hourly Capacity (Cw)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity Test 1</td>
<td></td>
<td>54.22</td>
</tr>
<tr>
<td>Sensitivity Test 2</td>
<td></td>
<td>53.74</td>
</tr>
<tr>
<td>Sensitivity Test 3</td>
<td></td>
<td>53.26</td>
</tr>
<tr>
<td>Annual Service Volume (ASV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity Test 1</td>
<td></td>
<td>215,100</td>
</tr>
<tr>
<td>Sensitivity Test 2</td>
<td></td>
<td>213,100</td>
</tr>
<tr>
<td>Sensitivity Test 3</td>
<td></td>
<td>211,200</td>
</tr>
</tbody>
</table>
Maximum Annual Passenger Volume

The annual passenger volume was estimated from the range of ASV as shown in **Table 23**. Three scenarios were considered:

- **Scenario 1:** The mix of operations for commercial and non-commercial assumes 20/80 on Runway 12/30; and the split between air carriers and commuters assumes the historical average for the recent 5-year (see Figures 21). i.e. 80.9 percent of the 20 percent commercial operations would be air carriers. The average passenger per aircraft was based on the historical average seat capacity and load factor for each category of carriers (see Table 21).
- **Scenario 2:** The mix of operations for commercial and non-commercial assumes 30/70 on Runway 12/30; and the split between air carriers and commuters assumes the historical average for the recent 3-year (see Figures 21). i.e. 82.9 percent of the 30 percent commercial operations would be air carriers. The average passenger per aircraft was the same as Scenario 1.
- **Scenario 3:** The mix of operations for commercial and non-commercial assumes 40/60 on Runway 12/30; and the split between air carriers and commuters assumes the historical average for the recent 3-year (see Figures 21). i.e. 82.9 percent of the 40 percent commercial operations would be air carriers. The load factor was increased to 88 percent. This represents the high scenario.

Table 23: Summary of Airfield Analysis for LGB – Estimated Annual Passenger Volume

<table>
<thead>
<tr>
<th>Mix of Operations</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Carrier</td>
<td>16.18%</td>
<td>24.87%</td>
<td>33.16%</td>
</tr>
<tr>
<td>Commuter</td>
<td>3.82%</td>
<td>5.13%</td>
<td>6.84%</td>
</tr>
<tr>
<td>Total Commercial use on Runway 12/30</td>
<td>20%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>Average Passengers per Operations</td>
<td>111 (Air Carrier)</td>
<td>111 (Air Carrier)</td>
<td>120 (Air Carrier)</td>
</tr>
<tr>
<td></td>
<td>48 (Commuter)</td>
<td>48 (Commuter)</td>
<td>50 (Commuter)</td>
</tr>
<tr>
<td>Estimated Maximum Annual Passengers</td>
<td>4,242,000 (Sensitivity Test 1)</td>
<td>6,443,000 (Sensitivity Test 2)</td>
<td>9,274,000 (Sensitivity Test 3)</td>
</tr>
<tr>
<td></td>
<td>4,202,000 (Sensitivity Test 2)</td>
<td>6,383,000 (Sensitivity Test 2)</td>
<td>9,188,000 (Sensitivity Test 3)</td>
</tr>
<tr>
<td></td>
<td>4,165,000 (Sensitivity Test 3)</td>
<td>6,326,000 (Sensitivity Test 3)</td>
<td>9,106,000 (Sensitivity Test 3)</td>
</tr>
</tbody>
</table>

Source: FAA ATADS; and AECOM analysis.

It should be noted that these maximum passenger volumes are very dependent on 1) the size of aircraft (e.g. number of seats) and 2) load factors. Changes in these elements will have a direct impact on the estimated annual passenger volume for the airfield.

In summary, the potential maximum airfield capacity for LGB was estimated to be a range between approximately **4.2** and **9.3 MAP**, which depends on the percentage of commercial use on Runway 12/30.
3.4.4 LGB Gate Capacity Analysis

The existing LGB terminal includes 11 gates: Gates 1 to 11. All 11 gates are designated for ADG III aircraft. The existing terminal layout is shown in Exhibit 3.

Exhibit 3: LGB Existing Terminal Layout

![Exhibit 3: LGB Existing Terminal Layout](image)

Source: Google Earth, Imagery Date: April 2014.

The maximum number of operations (departures and arrivals) per gate is approximately 10 based on ground loading, one hour turn time, and 15 hours of operation (6:30am to 9:30pm).

The future ADG III aircraft fleet assumes the B737 MAX. A seat capacity of 200 was assumed in the gate analysis for LGB.

The average load factor was assumed to be 88 percent in the gate analysis.

Based on these assumptions, the 11-gate terminal arrangement would have a maximum capacity of approximately **6.6 MAP** (\(\text{Number of operations per gate} \times \text{Number of gates} \times \text{Seat Capacity} \times \text{Load Factor} \times D\)).

3.4.5 LGB Overall Airport Capacity

The overall/ultimate airport capacity was obtained by combining the scenarios for the airfield and the gate arrangement. The overall capacity for LGB is approximately **4.2 to 6.6 MAP** with the lower limit constrained by the

30 Meeting with LGB, October 2014.
31 Ibid
32 Ibid
airfield component and the upper limit constrained by terminal gate capacity (Figure 25). This range does not take into account the City of Long Beach noise ordinance.

![Figure 25: LGB Overall Airport Capacity](image)

4. Grand Summary

Table 24 summarizes the capacity analysis of the four airports LAX, SNA, BUR, and LGB.

<table>
<thead>
<tr>
<th>Airport</th>
<th>Airport Capacity Lower Limit</th>
<th>Constrained Element Lower Limit</th>
<th>Airport Capacity Upper Limit</th>
<th>Constrained Element Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAX</td>
<td>82.9 MAP</td>
<td>Airfield</td>
<td>96.6 MAP</td>
<td>Airfield</td>
</tr>
<tr>
<td>SNA</td>
<td>9.6 MAP<sup>1</sup></td>
<td>Airfield</td>
<td>16.0 MAP</td>
<td>Terminal Gates</td>
</tr>
<tr>
<td>BUR</td>
<td>7.3 MAP</td>
<td>Airfield</td>
<td>11.9 MAP</td>
<td>Airfield</td>
</tr>
<tr>
<td>LGB</td>
<td>4.2 MAP<sup>2</sup></td>
<td>Airfield</td>
<td>6.6 MAP<sup>2</sup></td>
<td>Terminal Gates</td>
</tr>
</tbody>
</table>

Notes:
1. In 2007, SNA accommodated almost 10 MAP, so the lower end of SNA’s range is not a plausible capacity limit.
2. This range does not take into account the City of Long Beach noise ordinance.
Appendix A (Fleet Mix, Load Factor, and Seat Capacity by Airlines)

Table A-1: LAX Fleet Mix, Load Factor, and Seat Capacity by Airlines, 2013

<table>
<thead>
<tr>
<th>Airline and Fleet Mix</th>
<th>Average Load Factor</th>
<th>Average Seat Capacity</th>
<th>No. of Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABX Air, Inc.</td>
<td>N/A</td>
<td>N/A</td>
<td>1,910</td>
</tr>
<tr>
<td>Boeing 767-200/ER/EM</td>
<td>N/A</td>
<td>N/A</td>
<td>1,910</td>
</tr>
<tr>
<td>Acropolis Aviation Ltd.</td>
<td>26.32%</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>26.32%</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Aeroflot Russian Airlines</td>
<td>77.30%</td>
<td>259</td>
<td>580</td>
</tr>
<tr>
<td>Airbus A330-300</td>
<td>82.49%</td>
<td>241</td>
<td>556</td>
</tr>
<tr>
<td>Airbus A330-200</td>
<td>64.85%</td>
<td>302</td>
<td>24</td>
</tr>
<tr>
<td>Aerolitoral</td>
<td>59.26%</td>
<td>68</td>
<td>1,000</td>
</tr>
<tr>
<td>Embraer 190</td>
<td>46.18%</td>
<td>99</td>
<td>222</td>
</tr>
<tr>
<td>Embraer-145</td>
<td>66.98%</td>
<td>50</td>
<td>778</td>
</tr>
<tr>
<td>AeroLogic GmbH</td>
<td>N/A</td>
<td>N/A</td>
<td>205</td>
</tr>
<tr>
<td>Boeing 777-7F</td>
<td>N/A</td>
<td>N/A</td>
<td>205</td>
</tr>
<tr>
<td>Aeromexico</td>
<td>76.28%</td>
<td>143</td>
<td>4,844</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>76.50%</td>
<td>125</td>
<td>2,989</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>76.05%</td>
<td>162</td>
<td>1,855</td>
</tr>
<tr>
<td>Aerotransportes Mas De Crga</td>
<td>N/A</td>
<td>N/A</td>
<td>1,011</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>N/A</td>
<td>N/A</td>
<td>1,011</td>
</tr>
<tr>
<td>Aerounion Aerotransporte</td>
<td>N/A</td>
<td>N/A</td>
<td>1,165</td>
</tr>
<tr>
<td>Airbus A300BCF-100/200</td>
<td>N/A</td>
<td>N/A</td>
<td>1,165</td>
</tr>
<tr>
<td>Air Alsie A/S</td>
<td>38.46%</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Dassault Falcon 7X</td>
<td>38.46%</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Air Berlin PLC and CO</td>
<td>81.06%</td>
<td>295</td>
<td>448</td>
</tr>
<tr>
<td>Airbus A330-200</td>
<td>81.06%</td>
<td>295</td>
<td>448</td>
</tr>
<tr>
<td>Air Canada</td>
<td>76.07%</td>
<td>130</td>
<td>8,921</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>68.74%</td>
<td>108</td>
<td>1,776</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>79.32%</td>
<td>146</td>
<td>2,256</td>
</tr>
<tr>
<td>Airbus A321</td>
<td>82.01%</td>
<td>174</td>
<td>751</td>
</tr>
<tr>
<td>Airbus A330-200</td>
<td>93.40%</td>
<td>265</td>
<td>16</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>86.25%</td>
<td>214</td>
<td>242</td>
</tr>
<tr>
<td>Boeing 777-300/300ER/333ER</td>
<td>72.35%</td>
<td>349</td>
<td>6</td>
</tr>
<tr>
<td>Embraer 190</td>
<td>83.43%</td>
<td>97</td>
<td>3,874</td>
</tr>
<tr>
<td>Air China</td>
<td>83.62%</td>
<td>304</td>
<td>1,537</td>
</tr>
<tr>
<td>Boeing 747-200/300</td>
<td>83.62%</td>
<td>304</td>
<td>1,537</td>
</tr>
<tr>
<td>N/A</td>
<td>304</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>83.62%</td>
<td>304</td>
<td>1,367</td>
</tr>
<tr>
<td>Air Georgian</td>
<td>77.78%</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Cessna CE-600 Citation Sovereign</td>
<td>77.78%</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Air New Zealand</td>
<td>82.23%</td>
<td>299</td>
<td>2,312</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>83.11%</td>
<td>230</td>
<td>104</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>80.39%</td>
<td>304</td>
<td>156</td>
</tr>
<tr>
<td>Boeing 777-300/300ER/333ER</td>
<td>86.21%</td>
<td>331</td>
<td>2,052</td>
</tr>
<tr>
<td>Air Pacific Ltd.</td>
<td>80.50%</td>
<td>389</td>
<td>502</td>
</tr>
<tr>
<td>Airbus A330-200</td>
<td>84.21%</td>
<td>271</td>
<td>188</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>78.48%</td>
<td>454</td>
<td>314</td>
</tr>
<tr>
<td>Air Tahiti Nui</td>
<td>77.96%</td>
<td>280</td>
<td>1,757</td>
</tr>
<tr>
<td>Airbus A340-300</td>
<td>77.96%</td>
<td>280</td>
<td>1,757</td>
</tr>
<tr>
<td>Air Transport International</td>
<td>N/A</td>
<td>N/A</td>
<td>312</td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>N/A</td>
<td>N/A</td>
<td>312</td>
</tr>
<tr>
<td>AirTran Airways Corporation</td>
<td>92.30%</td>
<td>137</td>
<td>1,675</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>92.30%</td>
<td>137</td>
<td>1,675</td>
</tr>
<tr>
<td>Alaska Airlines Inc.</td>
<td>86.94%</td>
<td>154</td>
<td>21,351</td>
</tr>
<tr>
<td>Boeing 737-400</td>
<td>89.21%</td>
<td>144</td>
<td>5,060</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>89.03%</td>
<td>124</td>
<td>2,272</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>86.20%</td>
<td>157</td>
<td>8,401</td>
</tr>
<tr>
<td>Boeing 737-900</td>
<td>85.09%</td>
<td>174</td>
<td>5,618</td>
</tr>
<tr>
<td>Albinati Aeronautics SA</td>
<td>21.67%</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>
Airline and Fleet Mix | Average Load Factor | Average Seat Capacity | No. of Operations
--- | --- | --- | ---
Bombardier BD-700 Global Express | 21.67% | 12 | 5
All Nippon Airways Co. | 82.79% | 239 | 1,460
 - Boeing 777-200ER/200LR/233LR | 82.79% | 239 | 1,460
Allegiant Air | 87.35% | 167 | 1,335
 - Airbus A319 | 86.22% | 156 | 42
 - Boeing 757-200 | 72.50% | 223 | 44
 - McDonnell Douglas DC9 Super 80/MD81/82/83/88 | 88.71% | 166 | 1,246
 - McDonnell Douglas DC9 Super 87 | 39.49% | 130 | 3
American Airlines Inc. | 83.01% | 176 | 65,696
 - Airbus A319 | 68.00% | 128 | 26
 - Boeing 737-800 | 81.86% | 150 | 32,543
 - Boeing 757-200 | 83.00% | 183 | 15,725
 - Boeing 767-200/ER/EM | 86.94% | 168 | 6,467
 - Boeing 777-200ER/200LR/233LR | 85.02% | 218 | 2,868
 - Boeing 777-300/300ER/333ER | 84.04% | 246 | 3,348
 - McDonnell Douglas DC9 Super 80/MD81/82/83/88 | 82.07% | 310 | 412
 - McDonnell Douglas DC9 Super 87 | 81.49% | 137 | 4,307
Ameristar Air Cargo | 43.03% | 104 | 13
 - Boeing 737-100/200 | 56.70% | 56 | 4
 - McDonnell Douglas DC9 Super 80/MD81/82/83/88 | 32.11% | 152 | 4
 - McDonnell Douglas DC-9-15F | N/A | N/A | 4
Asiana Airlines Inc. | 82.85% | 341 | 2,058
 - Boeing 747-400 | 81.33% | 374 | 722
 - Boeing 747-400F | N/A | N/A | 612
 - Boeing 777-200ER/200LR/233LR | 84.37% | 307 | 724
Atlas Air Inc. | 46.99% | 335 | 318
 - Boeing 747-400 | 45.51% | 470 | 284
 - Boeing 747-400F | N/A | N/A | 17
 - Boeing 767-300/300ER | 49.40% | 132 | 13
 - Boeing B747-8 | N/A | N/A | 4
Avjet Corporation | 27.99% | 11 | 137
 - 1124A Westwind II | 39.29% | 7 | 4
 - Boeing 737-700/700LR | 36.72% | 16 | 8
 - Bombardier BD-700 Global Express | 15.38% | 13 | 6
 - Gulfstream Aerospace G-III/G-IV | 30.18% | 13 | 49
 - Gulfstream G150 | 17.28% | 10 | 10
 - Gulfstream G200 | 23.44% | 8 | 16
 - Gulfstream G450 | 20.10% | 12 | 12
 - Gulfstream III/I/V/G-V Exec G-5/550 | 16.33% | 7 | 7
 - McDonnell Douglas DC-9-40 | 42.31% | 13 | 2
 - Raytheon Beechcraft Hawker 800XP | 38.82% | 23 | 23
British Airways Plc | 89.26% | 327 | 1,867
 - Airbus A380-800 | 86.41% | 469 | 130
 - Boeing 747-200/300 | 90.58% | 291 | 160
 - Boeing 747-400 | 90.04% | 321 | 1,575
 - Boeing 777-200ER/200LR/233LR | 73.09% | 275 | 2
Cargolux Airlines International S.A | N/A | N/A | 815
 - Boeing 747-400F | N/A | N/A | 815
Cargolux Italia S.p.A. | N/A | N/A | 16
 - Boeing 747-400F | N/A | N/A | 16
Casino Express | 85.07% | 150 | 5
 - Boeing 737-400 | 85.07% | 150 | 5
CAT Aviation | 25.00% | 13 | 4
 - Dassault Falcon 7X | 25.00% | 13 | 4
Cathay Pacific Airways Ltd. | 88.13% | 289 | 2,728
 - Airbus A340-200 | 93.82% | 275 | 2
 - Boeing 747-400F | N/A | N/A | 366
 - Boeing 777-300/300ER/333ER | 87.72% | 290 | 2,050
 - Boeing B747-8 | N/A | N/A | 310
Centurion Cargo Inc. | N/A | N/A | 56
 - McDonnell Douglas MD-11 | N/A | N/A | 56
Chartright Air Inc. | 36.21% | 9 | 14
<table>
<thead>
<tr>
<th>Airline and Fleet Mix</th>
<th>Average Load Factor</th>
<th>Average Seat Capacity</th>
<th>No. of Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bombardier BD-100-1A10 Challenger 300</td>
<td>34.17%</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Gulfstream G150</td>
<td>39.29%</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>China Airlines Ltd.</td>
<td>82.05%</td>
<td>377</td>
<td>2,492</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>82.05%</td>
<td>377</td>
<td>1,376</td>
</tr>
<tr>
<td>Boeing 747-400F</td>
<td>N/A</td>
<td>N/A</td>
<td>1,116</td>
</tr>
<tr>
<td>China Cargo Airline</td>
<td>828</td>
<td>N/A</td>
<td>828</td>
</tr>
<tr>
<td>Boeing 777-7-F</td>
<td>N/A</td>
<td>N/A</td>
<td>828</td>
</tr>
<tr>
<td>China Eastern Airlines</td>
<td>90.10%</td>
<td>320</td>
<td>720</td>
</tr>
<tr>
<td>Airbus A340-600</td>
<td>90.10%</td>
<td>320</td>
<td>720</td>
</tr>
<tr>
<td>China Southern Airlines</td>
<td>85.89%</td>
<td>490</td>
<td>1,318</td>
</tr>
<tr>
<td>Airbus A380-800</td>
<td>85.89%</td>
<td>490</td>
<td>730</td>
</tr>
<tr>
<td>Boeing 747-400F</td>
<td>N/A</td>
<td>N/A</td>
<td>588</td>
</tr>
<tr>
<td>Compagnia Aerea Italiana</td>
<td>84.60%</td>
<td>293</td>
<td>298</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>84.60%</td>
<td>293</td>
<td>298</td>
</tr>
<tr>
<td>Compagnie Natl Air France</td>
<td>85.64%</td>
<td>365</td>
<td>1,608</td>
</tr>
<tr>
<td>Airbus A380-800</td>
<td>88.86%</td>
<td>516</td>
<td>712</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>83.89%</td>
<td>301</td>
<td>868</td>
</tr>
<tr>
<td>Boeing 777-300/300ER/333ER</td>
<td>86.46%</td>
<td>298</td>
<td>28</td>
</tr>
<tr>
<td>Compania Panamena (Copa)</td>
<td>80.86%</td>
<td>153</td>
<td>2,072</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>88.91%</td>
<td>124</td>
<td>4</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>79.58%</td>
<td>158</td>
<td>2,068</td>
</tr>
<tr>
<td>Compass Airlines</td>
<td>77.12%</td>
<td>76</td>
<td>3,501</td>
</tr>
<tr>
<td>Emiraj ERJ-175</td>
<td>77.12%</td>
<td>76</td>
<td>3,501</td>
</tr>
<tr>
<td>Concesionaria Vuela Compania</td>
<td>77.87%</td>
<td>157</td>
<td>3,709</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>80.94%</td>
<td>143</td>
<td>2,232</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>73.98%</td>
<td>174</td>
<td>1,477</td>
</tr>
<tr>
<td>DCA</td>
<td>12.50%</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Gulfstream III/V/G-V Exec/ G-5/550</td>
<td>12.50%</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Delta Air Lines Inc.</td>
<td>81.14%</td>
<td>170</td>
<td>47,738</td>
</tr>
<tr>
<td>Airbus A330-300</td>
<td>76.52%</td>
<td>297</td>
<td>27</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>80.75%</td>
<td>91</td>
<td>5,441</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>81.24%</td>
<td>150</td>
<td>3,367</td>
</tr>
<tr>
<td>Airbus A330-200</td>
<td>79.14%</td>
<td>239</td>
<td>330</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>79.37%</td>
<td>160</td>
<td>8,091</td>
</tr>
<tr>
<td>Boeing 737-900</td>
<td>85.82%</td>
<td>180</td>
<td>419</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>81.56%</td>
<td>376</td>
<td>6</td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>80.88%</td>
<td>179</td>
<td>17,351</td>
</tr>
<tr>
<td>Boeing 757-300</td>
<td>84.11%</td>
<td>224</td>
<td>2,384</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>81.64%</td>
<td>240</td>
<td>8,137</td>
</tr>
<tr>
<td>Boeing 767-400/ER</td>
<td>96.37%</td>
<td>246</td>
<td>10</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>88.97%</td>
<td>269</td>
<td>2,165</td>
</tr>
<tr>
<td>McDonnell Douglas DC9 Super 80/MD81/82/83/88</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>McDonnell Douglas MD-90</td>
<td>54.18%</td>
<td>160</td>
<td>10</td>
</tr>
<tr>
<td>El Al Israel Airlines Ltd.</td>
<td>84.65%</td>
<td>278</td>
<td>402</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>84.65%</td>
<td>278</td>
<td>402</td>
</tr>
<tr>
<td>Emirates</td>
<td>89.83%</td>
<td>326</td>
<td>730</td>
</tr>
<tr>
<td>Airbus A380-800</td>
<td>90.54%</td>
<td>486</td>
<td>60</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>96.80%</td>
<td>266</td>
<td>2</td>
</tr>
<tr>
<td>Boeing 777-300/300ER/333ER</td>
<td>69.19%</td>
<td>317</td>
<td>668</td>
</tr>
<tr>
<td>Envoy Air</td>
<td>71.69%</td>
<td>64</td>
<td>12,680</td>
</tr>
<tr>
<td>Canadair RJ-700</td>
<td>71.69%</td>
<td>64</td>
<td>12,680</td>
</tr>
<tr>
<td>Eva Airways Corporation</td>
<td>86.62%</td>
<td>317</td>
<td>2,257</td>
</tr>
<tr>
<td>Boeing 747-400F</td>
<td>N/A</td>
<td>N/A</td>
<td>68</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>85.62%</td>
<td>317</td>
<td>1,675</td>
</tr>
<tr>
<td>McDonnell Douglas MD-11</td>
<td>N/A</td>
<td>N/A</td>
<td>514</td>
</tr>
<tr>
<td>ExpressJet Airlines Inc.</td>
<td>64.54%</td>
<td>50</td>
<td>133</td>
</tr>
<tr>
<td>Embraer-145</td>
<td>64.54%</td>
<td>50</td>
<td>133</td>
</tr>
<tr>
<td>Falcon Air Express</td>
<td>79.49%</td>
<td>156</td>
<td>4</td>
</tr>
<tr>
<td>McDonnell Douglas DC9 Super 80/MD81/82/83/88</td>
<td>79.49%</td>
<td>156</td>
<td>4</td>
</tr>
<tr>
<td>Federal Express Corporation</td>
<td>N/A</td>
<td>N/A</td>
<td>7,844</td>
</tr>
<tr>
<td>Airbus A300-600/R/CF/RCF</td>
<td>N/A</td>
<td>N/A</td>
<td>1,392</td>
</tr>
<tr>
<td>Airbus A310-200C/F</td>
<td>N/A</td>
<td>N/A</td>
<td>34</td>
</tr>
<tr>
<td>Airline and Fleet Mix</td>
<td>Average Load Factor</td>
<td>Average Seat Capacity</td>
<td>No. of Operations</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>N/A</td>
<td>N/A</td>
<td>111</td>
</tr>
<tr>
<td>Boeing B777-F</td>
<td>N/A</td>
<td>N/A</td>
<td>15</td>
</tr>
<tr>
<td>McDonnell Douglas DC-10-10</td>
<td>N/A</td>
<td>N/A</td>
<td>1,804</td>
</tr>
<tr>
<td>McDonnell Douglas DC-10-30</td>
<td>N/A</td>
<td>N/A</td>
<td>766</td>
</tr>
<tr>
<td>McDonnell Douglas MD-11</td>
<td>N/A</td>
<td>N/A</td>
<td>3,722</td>
</tr>
<tr>
<td>Flair Airlines Ltd.</td>
<td>30.38%</td>
<td>158</td>
<td>1</td>
</tr>
<tr>
<td>Boeing 737-400</td>
<td>30.38%</td>
<td>158</td>
<td>1</td>
</tr>
<tr>
<td>Frontier Airlines Inc.</td>
<td>89.91%</td>
<td>150</td>
<td>2,919</td>
</tr>
<tr>
<td>Airbus A-318</td>
<td>97.29%</td>
<td>120</td>
<td>6</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>86.71%</td>
<td>138</td>
<td>1,977</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>92.49%</td>
<td>168</td>
<td>936</td>
</tr>
<tr>
<td>G5 Executive Ag</td>
<td>25.00%</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Gulfstream III/W/G-V Exec/ G-5/550</td>
<td>25.00%</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Great Lakes Airlines</td>
<td>33.01%</td>
<td>19</td>
<td>3,714</td>
</tr>
<tr>
<td>Beech 1900 A/B/C/D</td>
<td>33.01%</td>
<td>19</td>
<td>3,714</td>
</tr>
<tr>
<td>Gulf And Caribbean Cargo</td>
<td>N/A</td>
<td>N/A</td>
<td>426</td>
</tr>
<tr>
<td>Convair CV-580</td>
<td>N/A</td>
<td>N/A</td>
<td>426</td>
</tr>
<tr>
<td>Hawaiian Airlines Inc.</td>
<td>86.98%</td>
<td>275</td>
<td>2,447</td>
</tr>
<tr>
<td>Airbus A330-200</td>
<td>90.14%</td>
<td>294</td>
<td>1,758</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>84.75%</td>
<td>262</td>
<td>668</td>
</tr>
<tr>
<td>Horizon Air</td>
<td>77.34%</td>
<td>76</td>
<td>6,250</td>
</tr>
<tr>
<td>De Havilland DHC8-400 Dash-8</td>
<td>77.34%</td>
<td>76</td>
<td>6,250</td>
</tr>
<tr>
<td>Iberia Air Lines Of Spain</td>
<td>78.47%</td>
<td>281</td>
<td>202</td>
</tr>
<tr>
<td>Airbus A340-200</td>
<td>81.22%</td>
<td>258</td>
<td>196</td>
</tr>
<tr>
<td>Airbus A340-500</td>
<td>71.15%</td>
<td>342</td>
<td>6</td>
</tr>
<tr>
<td>Japan Air Lines Co. Ltd.</td>
<td>82.85%</td>
<td>244</td>
<td>730</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>82.85%</td>
<td>244</td>
<td>730</td>
</tr>
<tr>
<td>Jet Aviation Business Jets AG</td>
<td>21.25%</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Bombardier BD-700 Global Express</td>
<td>30.00%</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Dassault Falcon 7X</td>
<td>28.00%</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Gulfstream III/W/G-V Exec/ G-5/550</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>JetBlue Airways</td>
<td>87.41%</td>
<td>150</td>
<td>6,722</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>87.41%</td>
<td>150</td>
<td>6,722</td>
</tr>
<tr>
<td>KaiserAir, Inc.</td>
<td>78.33%</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>78.33%</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>Kalitta Air LLC</td>
<td>N/A</td>
<td>N/A</td>
<td>522</td>
</tr>
<tr>
<td>Boeing 747-200/300</td>
<td>N/A</td>
<td>N/A</td>
<td>522</td>
</tr>
<tr>
<td>Kalitta Charters II</td>
<td>N/A</td>
<td>N/A</td>
<td>3</td>
</tr>
<tr>
<td>Boeing 727-200/231A</td>
<td>N/A</td>
<td>N/A</td>
<td>3</td>
</tr>
<tr>
<td>Klm Royal Dutch Airlines</td>
<td>91.56%</td>
<td>328</td>
<td>850</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>91.21%</td>
<td>332</td>
<td>802</td>
</tr>
<tr>
<td>McDonnell Douglas MD-11</td>
<td>95.43%</td>
<td>285</td>
<td>48</td>
</tr>
<tr>
<td>Korean Air Lines Co. Ltd.</td>
<td>73.38%</td>
<td>318</td>
<td>3,710</td>
</tr>
<tr>
<td>Airbus A330-200</td>
<td>60.28%</td>
<td>222</td>
<td>172</td>
</tr>
<tr>
<td>Airbus A380-800</td>
<td>77.94%</td>
<td>407</td>
<td>892</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>81.59%</td>
<td>333</td>
<td>607</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>84.99%</td>
<td>255</td>
<td>12</td>
</tr>
<tr>
<td>Boeing 777-300/300ER/333ER</td>
<td>69.39%</td>
<td>291</td>
<td>1,002</td>
</tr>
<tr>
<td>Boeing B747-8</td>
<td>N/A</td>
<td>N/A</td>
<td>1,022</td>
</tr>
<tr>
<td>Boeing B777-F</td>
<td>N/A</td>
<td>N/A</td>
<td>3</td>
</tr>
<tr>
<td>Lacsa</td>
<td>87.08%</td>
<td>146</td>
<td>970</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>91.01%</td>
<td>120</td>
<td>145</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>84.61%</td>
<td>150</td>
<td>701</td>
</tr>
<tr>
<td>Airbus A321</td>
<td>91.85%</td>
<td>194</td>
<td>124</td>
</tr>
<tr>
<td>Lan Peru Airlines</td>
<td>83.03%</td>
<td>233</td>
<td>628</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>83.03%</td>
<td>233</td>
<td>628</td>
</tr>
<tr>
<td>Lan-Chile Airlines</td>
<td>83.93%</td>
<td>220</td>
<td>816</td>
</tr>
<tr>
<td>B787-800 Dreamliner</td>
<td>82.93%</td>
<td>239</td>
<td>170</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>84.15%</td>
<td>215</td>
<td>644</td>
</tr>
<tr>
<td>Boeing B777-F</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>London Air Services Limited</td>
<td>44.07%</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Bombardier Challenger 604/605</td>
<td>39.58%</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Airline Name</td>
<td>Average Load Factor</td>
<td>Average Seat Capacity</td>
<td>No. of Operations</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Learjet45</td>
<td>45.06%</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>Lufthansa German Airlines</td>
<td>88.75%</td>
<td>338</td>
<td>1,726</td>
</tr>
<tr>
<td>Airbus A340-300</td>
<td>97.17%</td>
<td>234</td>
<td>6</td>
</tr>
<tr>
<td>Airbus A340-600</td>
<td>85.79%</td>
<td>313</td>
<td>598</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>90.15%</td>
<td>341</td>
<td>298</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>89.07%</td>
<td>386</td>
<td>699</td>
</tr>
<tr>
<td>McDonnell Douglas MD-11</td>
<td>N/A</td>
<td>N/A</td>
<td>115</td>
</tr>
<tr>
<td>Lynden Air Cargo Airlines</td>
<td>N/A</td>
<td>N/A</td>
<td>5</td>
</tr>
<tr>
<td>Lockheed L100-30/L-382E</td>
<td>N/A</td>
<td>N/A</td>
<td>5</td>
</tr>
<tr>
<td>Malaysian Airline System</td>
<td>79.06%</td>
<td>282</td>
<td>416</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>79.06%</td>
<td>282</td>
<td>416</td>
</tr>
<tr>
<td>Miami Air International</td>
<td>24.53%</td>
<td>157</td>
<td>28</td>
</tr>
<tr>
<td>Boeing 737-400</td>
<td>21.00%</td>
<td>149</td>
<td>19</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>31.20%</td>
<td>170</td>
<td>9</td>
</tr>
<tr>
<td>Nippon Cargo Airlines</td>
<td>N/A</td>
<td>N/A</td>
<td>737</td>
</tr>
<tr>
<td>Boeing 747-400F</td>
<td>N/A</td>
<td>N/A</td>
<td>737</td>
</tr>
<tr>
<td>North American Airlines</td>
<td>44.84%</td>
<td>252</td>
<td>4</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>44.84%</td>
<td>252</td>
<td>4</td>
</tr>
<tr>
<td>Omni Air Express</td>
<td>30.57%</td>
<td>277</td>
<td>4</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>30.57%</td>
<td>277</td>
<td>4</td>
</tr>
<tr>
<td>Philippine Airlines Inc.</td>
<td>75.26%</td>
<td>348</td>
<td>994</td>
</tr>
<tr>
<td>Airbus A340-200</td>
<td>67.19%</td>
<td>263</td>
<td>240</td>
</tr>
<tr>
<td>Airbus A340-300</td>
<td>77.90%</td>
<td>254</td>
<td>48</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>80.49%</td>
<td>424</td>
<td>706</td>
</tr>
<tr>
<td>Polar Air Cargo Airways</td>
<td>N/A</td>
<td>N/A</td>
<td>670</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>N/A</td>
<td>N/A</td>
<td>503</td>
</tr>
<tr>
<td>Boeing 747-400F</td>
<td>N/A</td>
<td>N/A</td>
<td>165</td>
</tr>
<tr>
<td>Boeing B747-8</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Qantas Airways Ltd.</td>
<td>77.05%</td>
<td>410</td>
<td>3,677</td>
</tr>
<tr>
<td>Airbus A380-800</td>
<td>79.79%</td>
<td>477</td>
<td>1,428</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>75.07%</td>
<td>362</td>
<td>2,106</td>
</tr>
<tr>
<td>Boeing 747-400F</td>
<td>N/A</td>
<td>N/A</td>
<td>143</td>
</tr>
<tr>
<td>Republic Airlines</td>
<td>94.44%</td>
<td>99</td>
<td>2</td>
</tr>
<tr>
<td>Embraer 190</td>
<td>94.44%</td>
<td>99</td>
<td>2</td>
</tr>
<tr>
<td>Singapore Airlines Ltd.</td>
<td>77.75%</td>
<td>285</td>
<td>1,464</td>
</tr>
<tr>
<td>Airbus A340-500</td>
<td>70.16%</td>
<td>100</td>
<td>402</td>
</tr>
<tr>
<td>Airbus A380-800</td>
<td>84.08%</td>
<td>458</td>
<td>729</td>
</tr>
<tr>
<td>Boeing 747-400F</td>
<td>N/A</td>
<td>N/A</td>
<td>333</td>
</tr>
<tr>
<td>SkyWest Airlines Inc.</td>
<td>75.09%</td>
<td>56</td>
<td>124,974</td>
</tr>
<tr>
<td>Canadair CRJ 900</td>
<td>73.84%</td>
<td>76</td>
<td>13,131</td>
</tr>
<tr>
<td>Canadair RJ-200ER /RJ-440</td>
<td>79.37%</td>
<td>50</td>
<td>46,367</td>
</tr>
<tr>
<td>Canadair RJ-700</td>
<td>79.00%</td>
<td>66</td>
<td>31,667</td>
</tr>
<tr>
<td>Embraer EMB-120 Brasilia</td>
<td>59.19%</td>
<td>30</td>
<td>33,809</td>
</tr>
<tr>
<td>Southern Air Inc.</td>
<td>N/A</td>
<td>N/A</td>
<td>575</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>N/A</td>
<td>N/A</td>
<td>426</td>
</tr>
<tr>
<td>Boeing B777-F</td>
<td>N/A</td>
<td>N/A</td>
<td>149</td>
</tr>
<tr>
<td>Southwest Airlines Co.</td>
<td>76.96%</td>
<td>147</td>
<td>73,662</td>
</tr>
<tr>
<td>Boeing 737-300</td>
<td>76.18%</td>
<td>139</td>
<td>18,342</td>
</tr>
<tr>
<td>Boeing 737-500</td>
<td>71.74%</td>
<td>122</td>
<td>49</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>78.56%</td>
<td>143</td>
<td>49,081</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>75.40%</td>
<td>175</td>
<td>6,190</td>
</tr>
<tr>
<td>Spirit Air Lines</td>
<td>87.53%</td>
<td>155</td>
<td>4,532</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>88.13%</td>
<td>145</td>
<td>3,674</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>86.15%</td>
<td>178</td>
<td>858</td>
</tr>
<tr>
<td>Sun Country Airlines d/b/a MN Airlines</td>
<td>65.76%</td>
<td>151</td>
<td>1,161</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>70.58%</td>
<td>129</td>
<td>710</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>63.40%</td>
<td>163</td>
<td>451</td>
</tr>
<tr>
<td>Swift Air, LLC</td>
<td>62.39%</td>
<td>82</td>
<td>24</td>
</tr>
<tr>
<td>Boeing 737-400</td>
<td>68.79%</td>
<td>73</td>
<td>18</td>
</tr>
<tr>
<td>Boeing 767-200/ER/EM</td>
<td>46.41%</td>
<td>102</td>
<td>6</td>
</tr>
<tr>
<td>Swiss International Airlines</td>
<td>92.60%</td>
<td>219</td>
<td>692</td>
</tr>
<tr>
<td>Airline and Fleet Mix</td>
<td>Average Load Factor</td>
<td>Average Seat Capacity</td>
<td>No. of Operations</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Airbus A340-200</td>
<td>92.60%</td>
<td>219</td>
<td>692</td>
</tr>
<tr>
<td>Taca International Airlines</td>
<td>81.69%</td>
<td>151</td>
<td>2,151</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>83.32%</td>
<td>120</td>
<td>280</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>85.60%</td>
<td>150</td>
<td>1,240</td>
</tr>
<tr>
<td>Airbus A321</td>
<td>86.72%</td>
<td>194</td>
<td>627</td>
</tr>
<tr>
<td>Embraer 190</td>
<td>5.73%</td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>TAG Aviation (UK) Ltd.</td>
<td>29.68%</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Canadair CL-600 Challenger</td>
<td>30.00%</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Dassault Falcon 7X</td>
<td>21.43%</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Dassault Falcon 900</td>
<td>50.00%</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Thai Airways International Ltd.</td>
<td>69.66%</td>
<td>348</td>
<td>418</td>
</tr>
<tr>
<td>Boeing 777-300/300ER/333ER</td>
<td>69.66%</td>
<td>348</td>
<td>418</td>
</tr>
<tr>
<td>Transaero Airlines</td>
<td>73.62%</td>
<td>315</td>
<td>84</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>72.35%</td>
<td>375</td>
<td>13</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>65.25%</td>
<td>265</td>
<td>9</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>75.55%</td>
<td>313</td>
<td>62</td>
</tr>
<tr>
<td>Transportes Aereos Mercantiles</td>
<td>N/A</td>
<td>N/A</td>
<td>8</td>
</tr>
<tr>
<td>Boeing 767-200/ER/EM</td>
<td>N/A</td>
<td>N/A</td>
<td>8</td>
</tr>
<tr>
<td>TUI Airlines Nederland B.V.</td>
<td>34.45%</td>
<td>283</td>
<td>88</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>34.45%</td>
<td>283</td>
<td>88</td>
</tr>
<tr>
<td>Turk Hava Yollari A.O.</td>
<td>85.82%</td>
<td>337</td>
<td>674</td>
</tr>
<tr>
<td>Boeing 777-300/300ER/333ER</td>
<td>85.82%</td>
<td>337</td>
<td>670</td>
</tr>
<tr>
<td>Tyrolean Jet Service</td>
<td>29.73%</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Airbus A-318</td>
<td>44.74%</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Gulfstream G200</td>
<td>22.22%</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Unijet</td>
<td>16.67%</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Dassault Falcon 7X</td>
<td>16.67%</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>United Air Lines Inc.</td>
<td>82.95%</td>
<td>168</td>
<td>70,936</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>86.44%</td>
<td>120</td>
<td>4,278</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>83.04%</td>
<td>142</td>
<td>10,669</td>
</tr>
<tr>
<td>B787-800 Dreamliner</td>
<td>85.36%</td>
<td>219</td>
<td>1,019</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>86.08%</td>
<td>118</td>
<td>1,809</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>80.67%</td>
<td>154</td>
<td>14,009</td>
</tr>
<tr>
<td>Boeing 737-900</td>
<td>81.87%</td>
<td>168</td>
<td>8,419</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>77.92%</td>
<td>373</td>
<td>713</td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>85.21%</td>
<td>176</td>
<td>19,945</td>
</tr>
<tr>
<td>Boeing 757-300</td>
<td>83.61%</td>
<td>213</td>
<td>7,937</td>
</tr>
<tr>
<td>Boeing 767-200/ER/EM</td>
<td>83.99%</td>
<td>174</td>
<td>223</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>84.43%</td>
<td>193</td>
<td>48</td>
</tr>
<tr>
<td>Boeing 767-400</td>
<td>75.73%</td>
<td>243</td>
<td>145</td>
</tr>
<tr>
<td>Boeing 777-200ER/200LR/233LR</td>
<td>78.95%</td>
<td>272</td>
<td>1,722</td>
</tr>
<tr>
<td>United Parcel Service</td>
<td>N/A</td>
<td>N/A</td>
<td>944</td>
</tr>
<tr>
<td>Airbus A300-600/R/CF/RCF</td>
<td>N/A</td>
<td>N/A</td>
<td>59</td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>N/A</td>
<td>N/A</td>
<td>9</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>N/A</td>
<td>N/A</td>
<td>876</td>
</tr>
<tr>
<td>US Airways Inc.</td>
<td>87.49%</td>
<td>166</td>
<td>12,469</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>81.81%</td>
<td>124</td>
<td>721</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>90.66%</td>
<td>150</td>
<td>2,004</td>
</tr>
<tr>
<td>Airbus A321</td>
<td>89.06%</td>
<td>186</td>
<td>9,627</td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>82.00%</td>
<td>188</td>
<td>117</td>
</tr>
<tr>
<td>USA Jet Airlines Inc.</td>
<td>N/A</td>
<td>N/A</td>
<td>10</td>
</tr>
<tr>
<td>Dassault-Breguet Mystere-Falcon</td>
<td>N/A</td>
<td>N/A</td>
<td>4</td>
</tr>
<tr>
<td>McDonnell Douglas DC-9-15F</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>McDonnell Douglas DC-9-30</td>
<td>N/A</td>
<td>N/A</td>
<td>4</td>
</tr>
<tr>
<td>Virgin America</td>
<td>76.47%</td>
<td>138</td>
<td>28,622</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>75.10%</td>
<td>119</td>
<td>5,289</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>77.18%</td>
<td>147</td>
<td>23,333</td>
</tr>
<tr>
<td>Virgin Atlantic Airways</td>
<td>85.94%</td>
<td>322</td>
<td>1,286</td>
</tr>
<tr>
<td>Airbus A340-300</td>
<td>90.00%</td>
<td>240</td>
<td>4</td>
</tr>
<tr>
<td>Airbus A340-600</td>
<td>81.56%</td>
<td>308</td>
<td>964</td>
</tr>
<tr>
<td>Boeing 747-400</td>
<td>91.88%</td>
<td>367</td>
<td>318</td>
</tr>
<tr>
<td>Virgin Blue International Airlines t/a V Australia</td>
<td>79.26%</td>
<td>361</td>
<td>1,440</td>
</tr>
</tbody>
</table>
Table A-2: SNA Fleet Mix, Load Factor, and Seat Capacity by Airlines, 2013

<table>
<thead>
<tr>
<th>Airline and Fleet Mix</th>
<th>Average Load Factor</th>
<th>Average Seat Capacity</th>
<th>No. of Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AirTran Airways Corporation</td>
<td>65.29%</td>
<td>137</td>
<td>2,921</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>65.29%</td>
<td>137</td>
<td>2,921</td>
</tr>
<tr>
<td>Alaska Airlines Inc.</td>
<td>82.97%</td>
<td>150</td>
<td>8,648</td>
</tr>
<tr>
<td>Boeing 737-400</td>
<td>79.74%</td>
<td>144</td>
<td>88</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>88.28%</td>
<td>124</td>
<td>5,641</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>79.28%</td>
<td>157</td>
<td>1,177</td>
</tr>
<tr>
<td>American Airlines Inc.</td>
<td>82.08%</td>
<td>150</td>
<td>8,648</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>82.08%</td>
<td>150</td>
<td>8,648</td>
</tr>
<tr>
<td>Ajit Corporation</td>
<td>21.00%</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Gulfstream Aerospace G-III/G-IV</td>
<td>22.53%</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Gulfstream G-200</td>
<td>19.57%</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>Gulfstream G450</td>
<td>8.79%</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>McDonnell Douglas DC-8-72</td>
<td>12.50%</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Raytheon Beechcraft Hawker 800XP</td>
<td>26.47%</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Charteright Air Inc.</td>
<td>71.43%</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Gulfstream I</td>
<td>71.43%</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Delta Air Lines Inc.</td>
<td>69.93%</td>
<td>148</td>
<td>5,600</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>90.05%</td>
<td>126</td>
<td>3,319</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>75.96%</td>
<td>150</td>
<td>46</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>94.69%</td>
<td>124</td>
<td>11</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>49.69%</td>
<td>160</td>
<td>14</td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>53.78%</td>
<td>182</td>
<td>2,210</td>
</tr>
<tr>
<td>Federal Express Corporation</td>
<td>N/A</td>
<td>N/A</td>
<td>416</td>
</tr>
<tr>
<td>Airbus A300-600/R/CF/RCF</td>
<td>N/A</td>
<td>N/A</td>
<td>414</td>
</tr>
<tr>
<td>Airbus A310-200C/F</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Frontier Airlines Inc.</td>
<td>92.27%</td>
<td>138</td>
<td>2,292</td>
</tr>
<tr>
<td>Airbus A-318</td>
<td>89.21%</td>
<td>120</td>
<td>17</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>92.93%</td>
<td>138</td>
<td>2,275</td>
</tr>
<tr>
<td>London Air Services Limited</td>
<td>42.13%</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Bombardier Challenger 604/605</td>
<td>41.67%</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Learjet45</td>
<td>42.22%</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>SkyWest Airlines Inc.</td>
<td>81.84%</td>
<td>71</td>
<td>4,156</td>
</tr>
<tr>
<td>Canadian CRJ 900</td>
<td>88.18%</td>
<td>76</td>
<td>2,034</td>
</tr>
<tr>
<td>Canadian RJ-200ER /RJ-440</td>
<td>52.67%</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>Canadian RJ-700</td>
<td>83.01%</td>
<td>66</td>
<td>2,114</td>
</tr>
<tr>
<td>Embraer EMB-120 Brasilia</td>
<td>45.00%</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Southwest Airlines Co.</td>
<td>76.14%</td>
<td>143</td>
<td>32,662</td>
</tr>
<tr>
<td>Boeing 737-300</td>
<td>42.70%</td>
<td>137</td>
<td>2</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>77.85%</td>
<td>143</td>
<td>32,268</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>67.74%</td>
<td>175</td>
<td>394</td>
</tr>
<tr>
<td>Tyrolean Jet Service</td>
<td>22.22%</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Gulfstream G200</td>
<td>22.22%</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

Source: U.S. DOT T100 Database 2013; and AECOM analysis.
Notes: N/A denotes not applicable, which represents cargo only flights, etc.
Table A-3: BUR Fleet Mix, Load Factor, and Seat Capacity by Airlines, 2013

<table>
<thead>
<tr>
<th>Airline and Fleet Mix</th>
<th>Average Load Factor</th>
<th>Average Seat Capacity</th>
<th>No. of Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AirTran Airways Corporation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>100.00%</td>
<td>137</td>
<td>1</td>
</tr>
<tr>
<td>Boeing 737-400</td>
<td>100.00%</td>
<td>137</td>
<td>1</td>
</tr>
<tr>
<td>Alaska Airlines Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 737-700/LR</td>
<td>81.74%</td>
<td>134</td>
<td>2,107</td>
</tr>
<tr>
<td>Boeing 737-400</td>
<td>77.07%</td>
<td>144</td>
<td>24</td>
</tr>
<tr>
<td>Boeing 737-700/LR</td>
<td>89.89%</td>
<td>124</td>
<td>1,491</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>77.33%</td>
<td>157</td>
<td>584</td>
</tr>
<tr>
<td>Boeing 737-900</td>
<td>79.74%</td>
<td>174</td>
<td>8</td>
</tr>
<tr>
<td>Avjet Corporation</td>
<td></td>
<td></td>
<td>1,215</td>
</tr>
<tr>
<td>Boeing 737-700/LR</td>
<td>37.42%</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Bombardier Challenger 604/605</td>
<td>43.75%</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td>Gulfstream Aerospace G-III/G-IV</td>
<td>40.25%</td>
<td>13</td>
<td>333</td>
</tr>
<tr>
<td>Gulfstream G200</td>
<td>33.20%</td>
<td>8</td>
<td>247</td>
</tr>
<tr>
<td>Gulfstream G450</td>
<td>27.80%</td>
<td>13</td>
<td>104</td>
</tr>
<tr>
<td>McDonnell Douglas DC-8-72</td>
<td>57.81%</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Raytheon Beechcraft Hawker 800XP</td>
<td>35.44%</td>
<td>8</td>
<td>245</td>
</tr>
<tr>
<td>1124A Westwind II</td>
<td>44.53%</td>
<td>7</td>
<td>105</td>
</tr>
<tr>
<td>Gulfstream G150</td>
<td>43.61%</td>
<td>9</td>
<td>97</td>
</tr>
<tr>
<td>Bombardier BD-700 Global Express</td>
<td>29.49%</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>McDonnell Douglas DC-9-40</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Delta Air Lines Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>69.29%</td>
<td>184</td>
<td>4</td>
</tr>
<tr>
<td>Federal Express Corporation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airbus A300-600/R/CF/RCF</td>
<td>N/A</td>
<td>N/A</td>
<td>737</td>
</tr>
<tr>
<td>Airbus A300-200CF/R/CF/RCF</td>
<td>N/A</td>
<td>N/A</td>
<td>736</td>
</tr>
<tr>
<td>Frontier Airlines Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>82.14%</td>
<td>168</td>
<td>2</td>
</tr>
<tr>
<td>London Air Services Limited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learjet45</td>
<td>11.11%</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>SkyWest Airlines Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canadair CRJ 900</td>
<td>61.23%</td>
<td>56</td>
<td>9,994</td>
</tr>
<tr>
<td>Canadair RJ-200ER /RJ-440</td>
<td>66.23%</td>
<td>76</td>
<td>30</td>
</tr>
<tr>
<td>Canadair RJ-700</td>
<td>83.38%</td>
<td>50</td>
<td>6,812</td>
</tr>
<tr>
<td>Canadair RJ-700</td>
<td>78.56%</td>
<td>69</td>
<td>3,172</td>
</tr>
<tr>
<td>Southwest Airlines Co.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>64.70%</td>
<td>143</td>
<td>31,898</td>
</tr>
</tbody>
</table>

Source: U.S. DOT T100 Database 2013; and AECOM analysis.

Notes: N/A denotes not applicable, which represents cargo only flights, etc.
Table A-4: LGB Fleet Mix, Load Factor, and Seat Capacity by Airlines, 2013

<table>
<thead>
<tr>
<th>Airline and Fleet Mix</th>
<th>Average Load Factor</th>
<th>Average Seat Capacity</th>
<th>No. of Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska Airlines Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>64.88%</td>
<td>139</td>
<td>1,262</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>65.50%</td>
<td>143</td>
<td>30,589</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>56.68%</td>
<td>175</td>
<td>23</td>
</tr>
<tr>
<td>Boeing 737-500</td>
<td>61.27%</td>
<td>122</td>
<td>24</td>
</tr>
<tr>
<td>United Air Lines Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>87.34%</td>
<td>154</td>
<td>2</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>87.34%</td>
<td>154</td>
<td>2</td>
</tr>
<tr>
<td>United Parcel Service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airbus A300-600/R/CF/RCF</td>
<td>N/A</td>
<td>N/A</td>
<td>832</td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>N/A</td>
<td>N/A</td>
<td>20</td>
</tr>
<tr>
<td>US Airways Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>58.77%</td>
<td>166</td>
<td>7</td>
</tr>
<tr>
<td>Airbus A321</td>
<td>36.00%</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>Mesa Airlines Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canadair CRJ 900</td>
<td>72.24%</td>
<td>80</td>
<td>2,861</td>
</tr>
<tr>
<td>Canadair RJ-700</td>
<td>71.51%</td>
<td>80</td>
<td>2,770</td>
</tr>
<tr>
<td>Republic Airlines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>74.13%</td>
<td>99</td>
<td>34</td>
</tr>
<tr>
<td>Ameristar Air Cargo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonnell Douglas DC9 Super 80/MD81/82/83/88</td>
<td>63.82%</td>
<td>152</td>
<td>2</td>
</tr>
<tr>
<td>McDonnell Douglas DC-9-15F</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>JetBlue Airways</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>86.77%</td>
<td>150</td>
<td>753</td>
</tr>
<tr>
<td>Miami Air International</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 737-400</td>
<td>54.41%</td>
<td>68</td>
<td>2</td>
</tr>
<tr>
<td>Unijet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dassault Falcon 900</td>
<td>12.50%</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>KaiserAir, Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>70.00%</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>Allegiant Air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonnell Douglas DC9 Super 80/MD81/82/83/88</td>
<td>41.27%</td>
<td>166</td>
<td>2</td>
</tr>
<tr>
<td>GS Executive Ag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gulfstream III/V/G-V Exec/ G-5/550</td>
<td>37.50%</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Asiana Airlines Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing 747-400F</td>
<td>N/A</td>
<td>N/A</td>
<td>28</td>
</tr>
<tr>
<td>Horizon Air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Havilland DHC8-400 Dash-8</td>
<td>61.84%</td>
<td>76</td>
<td>1</td>
</tr>
<tr>
<td>SeaPort Airlines, Inc. d/b/a Wings of Alaska</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cessna 208 Caravan</td>
<td>20.20%</td>
<td>9</td>
<td>826</td>
</tr>
<tr>
<td>Grand Total (Commercial Operations)</td>
<td></td>
<td></td>
<td>51,317</td>
</tr>
</tbody>
</table>

Source: U.S. DOT T100 Database 2013; and AECOM analysis.

Notes: N/A denotes not applicable, which represents cargo only flights, etc.
<table>
<thead>
<tr>
<th>Airline and Fleet Mix</th>
<th>Average Load Factor</th>
<th>Average Seat Capacity</th>
<th>No. of Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadair RJ-200ER /RJ-440</td>
<td>90.81%</td>
<td>50</td>
<td>426</td>
</tr>
<tr>
<td>Canadair RJ-700</td>
<td>89.97%</td>
<td>68</td>
<td>3,460</td>
</tr>
<tr>
<td>United Air Lines Inc.</td>
<td>38.21%</td>
<td>155</td>
<td>5</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>38.21%</td>
<td>155</td>
<td>5</td>
</tr>
<tr>
<td>United Parcel Service</td>
<td>N/A</td>
<td>N/A</td>
<td>537</td>
</tr>
<tr>
<td>Airbus A300-600/R/CF/RCF</td>
<td>N/A</td>
<td>N/A</td>
<td>33</td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>N/A</td>
<td>N/A</td>
<td>502</td>
</tr>
<tr>
<td>US Airways Inc.</td>
<td>81.51%</td>
<td>132</td>
<td>657</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>87.00%</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>Airbus A321</td>
<td>37.43%</td>
<td>187</td>
<td>2</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>84.52%</td>
<td>124</td>
<td>651</td>
</tr>
<tr>
<td>Mesa Airlines Inc.</td>
<td>84.73%</td>
<td>80</td>
<td>2,529</td>
</tr>
<tr>
<td>Canadair CRJ 900</td>
<td>84.18%</td>
<td>80</td>
<td>2,492</td>
</tr>
<tr>
<td>Canadair RJ-700</td>
<td>98.49%</td>
<td>70</td>
<td>37</td>
</tr>
<tr>
<td>Republic Airlines</td>
<td>76.05%</td>
<td>99</td>
<td>55</td>
</tr>
<tr>
<td>Embraer 190</td>
<td>76.05%</td>
<td>99</td>
<td>55</td>
</tr>
<tr>
<td>AmeriStar Air Cargo</td>
<td>57.14%</td>
<td>56</td>
<td>3</td>
</tr>
<tr>
<td>McDonnell Douglas DC-9-15F</td>
<td>N/A</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>Boeing 737-100/200</td>
<td>57.14%</td>
<td>56</td>
<td>2</td>
</tr>
<tr>
<td>JetBlue Airways</td>
<td>83.47%</td>
<td>150</td>
<td>18,287</td>
</tr>
<tr>
<td>Airbus A320-100/200</td>
<td>83.47%</td>
<td>150</td>
<td>18,287</td>
</tr>
<tr>
<td>Miami Air International</td>
<td>98.84%</td>
<td>173</td>
<td>4</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>98.84%</td>
<td>173</td>
<td>4</td>
</tr>
<tr>
<td>KaiserAir, Inc.</td>
<td>47.50%</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>Boeing 737-700/700LR</td>
<td>47.50%</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>Allegiant Air</td>
<td>65.06%</td>
<td>166</td>
<td>1</td>
</tr>
<tr>
<td>McDonnell Douglas DC9 Super 80/MD81/82/83/88</td>
<td>65.06%</td>
<td>166</td>
<td>1</td>
</tr>
<tr>
<td>DCA</td>
<td>31.25%</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Gulfstream III/V/G-V Exec/ G-5/550</td>
<td>31.25%</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Kalitta Charters II</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Boeing 727-200/231A</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Air Canada</td>
<td>56.71%</td>
<td>81</td>
<td>9</td>
</tr>
<tr>
<td>Airbus A319</td>
<td>56.71%</td>
<td>81</td>
<td>9</td>
</tr>
<tr>
<td>Swift Air, LLC</td>
<td>65.69%</td>
<td>79</td>
<td>6</td>
</tr>
<tr>
<td>Boeing 737-400</td>
<td>77.21%</td>
<td>68</td>
<td>4</td>
</tr>
<tr>
<td>Boeing 767-200/ER/EM</td>
<td>42.65%</td>
<td>102</td>
<td>2</td>
</tr>
<tr>
<td>USA Jet Airlines Inc.</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>McDonnell Douglas DC-9-15F</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Atlas Air Inc.</td>
<td>51.76%</td>
<td>102</td>
<td>6</td>
</tr>
<tr>
<td>Boeing 767-300/300ER</td>
<td>51.76%</td>
<td>102</td>
<td>6</td>
</tr>
<tr>
<td>TAG Aviation S.A.</td>
<td>33.33%</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Bombardier BD-700 Global Express</td>
<td>33.33%</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>World Airways Inc.</td>
<td>92.39%</td>
<td>355</td>
<td>1</td>
</tr>
<tr>
<td>McDonnell Douglas MD-11</td>
<td>92.39%</td>
<td>355</td>
<td>1</td>
</tr>
</tbody>
</table>

Grand Total (Commercial Operations) 27,834

Source: U.S. DOT T100 Database 2013; and AECOM analysis.

Notes: N/A denotes not applicable, which represents cargo only flights, etc.