Stability and Robustness of Dynamical Traffic Networks

Modeling Task Force Meeting
Southern California Association of Governments
September 25, 2013

Ketan Savla
(ksavla@usc.edu)
Sonny Astani
Department of Civil & Environmental Engineering
University of Southern California
Outline of the Talk

- Motivation
- From static to dynamical traffic networks
 - Dynamics = capacity constraints + route choice + traffic control
- Stability and resilience
- Conclusion and future work
Motivation

- Costs of traffic congestion [TTI TAMU urban mobility report 2012]
 - Financial cost: $121 Billion
 - Time wastage: 5.5 Billion hours
 - Health, environment, etc.
Motivation

- Costs of traffic congestion [TTI TAMU urban mobility report 2012]
 - Financial cost: $121 Billion
 - Time wastage: 5.5 Billion hours
 - Health, environment, etc.

- Vulnerability to arbitrary and malicious ‘shocks’

Typical Monday at 18:30
Motivation

- **Costs of traffic congestion** [TTI TAMU urban mobility report 2012]
 - Financial cost: $121 Billion
 - Time wastage: 5.5 Billion hours
 - Health, environment, etc.

- **Vulnerability to arbitrary and malicious 'shocks'**

 Typical monday at 18:30

 Monday 11/07/11 at 18:30
Renewed interest: limited capacity of physical infrastructure, rapid advancements in information technology.

Cyber physical: wireless devices as sensory and actuation modes.

Transportation networks prone to disruptions.

Why distributed?

- Increased resilience to failure of control modules
- Scalability with respect to network size
- On-board computation
- Trade-off between performance and distributedness
Key elements of traffic models

- Infrastructure capacity
- Traffic light
- Driver choice
- Congestion pricing
Flow capacity on every link
Flow conservation at every node
Maximum feasible load = bottle-neck capacity
Network flow

- Flow capacity on every link
- Flow conservation at every node
- Maximum feasible load = bottle-neck capacity

Static framework
- Centralized
Network flow

- Flow capacity on every link
- Flow conservation at every node
- Maximum feasible load = bottle-neck capacity

Framework of choice for planning purposes
Traffic distribution is the outcome of a non-cooperative game between drivers.

- Driver decisions are dynamic.
- Driver decisions are myopic.
Congestion games

Traffic distribution is the outcome of a non-cooperative game between drivers.
Driver decisions are dynamic.
Driver decisions are myopic.

Equilibrium outcome
Adaptability to disturbances
Static
Global decision dynamics
From static to dynamical model

- $f_{j \rightarrow e}$ flow routed from j to e

- $f_{e}^{\text{out}} = \sum_{\text{outgoing } j} f_{e \rightarrow j}$

- $f_{e}^{\text{in}} = \sum_{\text{incoming } j} f_{j \rightarrow e}$
Stability and resilience of transportation networks
Quantifying stability and resilience

Stability

- Network is stable if output equals input
- For unstable networks, delay is infinite
- Response to ‘small’ disturbances

$\lambda_{in} \rightarrow \lambda_{out}(t)$
Quantifying stability and resilience

Stability
- Network is stable if output equals input
- For unstable networks, delay is infinite
- Response to 'small' disturbances

\[\lambda_{\text{in}}(t) \rightarrow \lambda_{\text{out}}(t) \]

Resilience
- Link disturbance = loss in capacity
- Network disturbance = \sum link disturbances
- Smallest malicious disturbance that destabilizes the network
Influence of route choice decisions

\[f_{e \rightarrow j} = D_e G_j \]

\(G_j \): fraction of drivers choosing link \(j \)

Cooperative route choice decisions

- business as usual congestion
 \[\implies \text{business as usual decision} \]

\[G_j^*(\text{eqm}) = \text{eqm route choice} \]

- choose links with less congestion

\[\frac{\partial G_j^*}{\partial \rho_k} \geq 0 \]

Example: i-logit

utility \(i \) = myopia + inertia
Cooperative route choice decisions

- business as usual congestion
 \[\implies \] business as usual decision
- choose links with less congestion

Example: i-logit
- utility \(_i = \text{myopia} + \text{inertia} \)

If the load on the system is feasible, then \(G^* \) is stabilizing
- Within the constraint of not controlling the inflow, \(G^* \) performs best
- \(G^* \) does not give the maximum possible resilience
- The gap increases with the network size
Cooperative route choice decisions

- business as usual congestion \Rightarrow business as usual decision
- choose links with less congestion

Example: i-logit
- utility $i = \text{myopia} + \text{inertia}$

- If the load on the system is feasible, then G^* is stabilizing
- Within the constraint of not controlling the inflow, G^* performs best
- G^* does not give the maximum possible resilience
- The gap increases with the network size

Resilience $= \min \text{ node residual capacity}$
Examples of suboptimal route choice

- passive routing
Examples of suboptimal route choice

- passive routing

- aggressive routing
Back to the general case

\[\dot{\rho}_e = f_{e}^{in} - f_{e}^{out} \]

- \(f_{j \rightarrow e} \) flow routed from \(j \) to \(e \)

\[f_{e}^{out} = \sum_{\text{outgoing } j} f_{e \rightarrow j} \]

\[f_{e}^{in} = \sum_{\text{incoming } j} f_{j \rightarrow e} \]
Cooperative routing

Boundary conditions

- Empty link \implies no outflow
- No flow towards congested links
- Fully congested links give maximum outflow if there is room downstream
Cooperative routing

- Increase in congestion \implies increase in outflow
 \[
 \frac{\partial f_{j\rightarrow e}}{\partial \rho_j} \geq 0
 \]

- Avoid congested links
 \[
 \frac{\partial f_{j\rightarrow e}}{\partial \rho_k} \geq 0
 \]

- Increase in downstream congestion \implies decrease in outflow
 \[
 \frac{\partial f_{\text{out}}}{\partial \rho_k} \leq 0
 \]
Cooperative routing

- Increase in congestion \implies increase in outflow
 \[\frac{\partial f_{j \rightarrow e}}{\partial \rho_j} \geq 0 \]

- Avoid congested links
 \[\frac{\partial f_{j \rightarrow e}}{\partial \rho_k} \geq 0 \]

- Increase in downstream congestion \implies decrease in outflow
 \[\frac{\partial f_{j}^{\text{out}}}{\partial \rho_k} \leq 0 \]

- Control based on local information
- Backward propagation of information
Performance of cooperative routing

- Feasible load \implies network is stable
- Infeasible load \implies there exists a unique bottleneck which gets jammed simultaneously.
- Entire network is shut down or no link is jammed
Performance of cooperative routing

- Feasible load \Rightarrow network is stable
- Infeasible load \Rightarrow there exists a unique bottleneck which gets jammed simultaneously.
- Entire network is shut down or no link is jammed

Maximum possible network stability and resilience
Resilience = network residual capacity
Graceful failure
Implications for planning

- Quantitative framework for resilience

- Dependence of resilience on traffic load, network structure, link capacity and route choice behavior

- Resilience as a social objective for transportation planning

- Resilience not aligned with typical social objectives such as delay
Current and future work

- Comprehensive study of resilience under a variety of practical constraints on traffic flow
- From analysis to control of traffic flow
- Connection between agent-based and macroscopic models
- Tradeoff between resilience and delay
- Extension to other infrastructure networks
Traffic flow theory

Cell Transmission Model for Networks:

- Outflow from link e depends on congestion on j and k
- Ratio between $f_{e \rightarrow j}$ and $f_{e \rightarrow k}$ is independent of congestion on j and k
From static to dynamical model

Mass conservation

\[\dot{\rho}_e = f_{e}^{\text{in}} - f_{e}^{\text{out}} \]

Constraints

- Density capacity on every link
- Flow capacity on every link

\[f_{e}^{\text{in}} \text{ and } f_{e}^{\text{out}} \text{ depend on traffic flow, route choice and signal control} \]

dynamic