Using Big Data for Transportation Planning & Modeling

Sal Akhter sal.akhter@streetlightdata.com

TOPICS

- New techniques in Big Data analytics
- What problems does it solve?
- How does it benefit you?
- Features and options
- Case Studies, Q & A

Data Driven Approach to Transportation Planning

- Proprietary and Confidential -

Conventional Data Tools are Insufficient

- **C** Expensive
- Infrequent
- **C** Time Consuming
- Small Sample Size
- ➡ H/W Install & Maintenance
- **C** Provide Incomplete Picture

✓ What?
✓ When?
✓ Where?
✓ Why?
✓ How?

Exploring Complete Anatomy of **People Movement**

WHAT

- Trip Information
 - Speed
 - **☑** Volume
 - **☑** Distance
 - **☑** Duration
 - ☑ AADT

WHERE

- O-D Information
 - ☑ By TAZs
 - By Zip Codes
 - ☑ Via Select Links
 - **By Census Blocks**

WHEN

- Archival Information
 - **By Month**
 - **By Day of Week**
 - **By Time of Day**

HOW

- Transportation Mode
 - Bike/Pedestrians
 - Personal Vehicles
 - **☑** Commercial Vehicles
 - ☑ Medium Duty
 - ☑ Heavy Duty

WHY

- Traveler Information
 - ✓ Trip Purpose
 - Home/Work
 - **☑** Demographics

- Proprietary and Confidential -

Available via a cloud-based Transportation Analytics Platform

✓ On-Demand Access

✓ Archival Data (2014+)

✓ Interactive U/I

✓ Easy to Use

✓ Cost Effective

- ✓ Fast Data Delivery
- ✓ Covers US & Canada

Converting Big Data into Useful Metrics

Combining Data Sources for a Holistic View

Achieving both Spatial and Temporal Precision

- Proprietary and Confidential -

STREETLIGHTDATA

Reducing Direct Data Costs by Nearly 50%

Annual StreetLight InSight Subscription Fee vs. Annual Data Spending for a Mid-Size MPO

StreetLight InSight Regional Subscription Added Value Fixed Annual Fee Cost Savings Multi-Domain Licenses: Premium Metrics for Population of 3.2M **Data Collection Speed & Unlimited Analyses** Household Survey (Last survey cost \$1.5M. Assume data was 2/3 of costs, and costs were amortized over 5 years.) Transportation Studies for Modeling (MPO budgeted \$1.3M. Assume 1/4 can be displaced.) Understanding Regional Trucking Flows (MPO budgeted ~\$200k for GPS data biennially.) TDM for Employer Support (MPO budgeted \$1M. Assume 10% is for data.) **Regional Mobility Hub Implementation** (MPO budgeted \$413k. Assume 20% for equity-focused data collection.) Special Studies: Commutes, Corridors, etc. Source: Final FY 2016 SANDAG Program Budget www.sandag.org/uploads/publicationid/publicationid 1957 19285.pdf (Data budget estimated based on prior special studies.) 0 200000 400000 600000 800000 1000000 1200000 1400000

STREETLIGHTDATA

- Proprietary and Confidential -

Variety of Uses, Multiple User Access, One Platform

Using StreetLight InSight[®] is Quick & Easy

STREETLIGHTDATA

Visual Graphics and Data Download Options

STREETLIGHT Insight brought to you by StreetLight Data

STREETLGHT**DATA**

- Proprietary and Confidential -

O Help

Platform Access Option A

Pay-Per-Use (Consultant):

Price:

- Per project, per analysis period.
- Based on total analysis zones in the project and metrics type.

Access:

- Consultant only.
- Limited to project and metrics purchased.

Platform Access Option B

Pay-Per-Use (Client):

Price:

- Per project, per analysis period.
- Based on total analysis zones in the project and metrics type.

Access:

- Client only.
- Limited to project and metrics purchased.

Platform Access Option C

Regional Subscription:

Price:

- Annual subscription.
- Based on area population and metrics type.
- Access:
 - Client and key consultant(s).
 - Unlimited usage within a specific geographical region for metrics purchased.
 - May extend to other agencies under a multi-domain license.

Self-Service Platform Features and Options

BASIC METRICS

- Origin-Destination
 - Relative volume
 - Avg. travel time
- O-D w/Middle Filter
 - Select link analysis
- **Zone Analysis**
 - All above metrics for each zone analyzed

PREMIUM METRICS

- □ Trip Attributes
 - Speed, Duration Length, Circuity
 - Commercial vehicle class (heavy/med)
 - O-D by geography
- **Traveler Attributes**
 - Simple trip purpose
 - Home/Work/Visitors
 - Demographics
- Volume
 - AADT Counts

STANDARD OPTIONS

- Data Period
 - Months of year
- Day Type
 - Days of week
- Day Parts
 - Times of day
- **Trip Type**
 - Personal
 - Commercial
- **Route Type**
 - Locked/Unlocked

Some Popular Uses of StreetLight InSight®

Travel Demand Modeling

Calibrate with Empirical, Comprehensive O-D Matrices

Colorado DOT used StreetLight InSight To Understand Seasonal & Weekday/Weekend Trends

Performance Measurement

Evaluate AADT, Travel Time Reliability, & More

Siemens Used StreetLight InSight to Study the Impact of its ITS Traffic Signals on Travel Time Reliability

Long-Term Planning

Study Regional Patterns & Engage With the Public

Fehr & Peers and Napa Valley Transport. Authority Used StreetLight InSight to Study Regional Trends

InSight to Analyze Downtown Congestion

Travel Demand Management Scan for High-Potential Project Opportunities

Virginia DOT, Michael Baker, and SSTI Scanned for "Displaceable Vehicle Trips" with StreetLight InSight

Project Evaluations

Easily Conduct "Before & After" Studies

Fehr & Peers and SANDAG used StreetLight InSight to Determine the Impact of a Toll on Behavior

STREETLIGHTDATA

Case Studies

Pass thru trips on I-85 in Atlanta Metro area

Question: How many trip traveling to Atlanta metro area on I-85 NB, a major traffic corridor, are pass thru trips?

Answer: The heat map shows the destinations (and relative distribution) of the trips that enter thru the zone marked "trip entry" on I-85 NB. About 3.2% of those trips continue thru the zone marked "trip exit" on I-85 NB.

Reducing congestion near Port of Long Beach

STREETLIGHTDATA

Question: How should LA Metro reroute commercial trucks to reduce commuter congestion on I-110 near Port of Long Beach?

Answer: The heat map shows the origins (and relative distribution) of all commercial trips during average weekday, peak PM hours, that use I-110 to access POLB.

- Proprietary and Confidential -

Construction planning at an interchange in Baltimore

Share of Personal Vehicles on E. Lombard that go to each Destination Link by Day Part

■ Bayview Blvd SB ■ E Lombard Continuing ■ Ponca SB ■ Ramp to 895 NB ■ Ramp to 895 SB ■ Other

Transit routes planning in Napa county

STREETLGHT**DATA**

Question: Where are the transit options most needed in Napa county?

Answer: Regional study showed high local commuter trip volume.

ITS performance measurement in Ann Arbor

Weekdays - Increase in Likelihood to Complete Corridor in Target Time

Before (Dec 14 to Oct 15)

After (Dec 15 to May 16)

Siemens wanted empirical data to prove that its SCOOT adaptive signal technology reduced travel times. Siemens used StreetLight's analytics to evaluate the impact. It showed SCOOT improved travel times and reliability significantly.

Ellsworth Corridor where SCOOT was installed

Corridor improvements impact in Toronto

Question: Did the construction of a new highway divert traffic from local roads?

Answer: A before/after study showed significant reduction of trips from neighborhood roads after the corridor improvement.

Transportation Demand Management in Virginia

TAZ ID	Avg Trip Duration (sec)	Avg Trip Speed (mph)	Sum under 1 mile	Sum under 3 mile	Large Volume of Short Vehicle Trips WB on
851	1186	27	5%	30%	Route 7 during Peak PM hours
850	1433	27	6%	25%	1065 trips
849	1427	30	4%	21%	(0.8%) (42%) 29% of traffic begins at Tysons
848	916	23	5%	47%	22% of trips are < 5 miles
847	1420	27	9%	39%	81 trips
846	1275	29	4%	28%	7% of trips are < 1 mile
845	1180	23	6%	38%	63 trips (0.9%)
844	1129	26	7%	37%	(0.3%)
843	1504	27	5%	25%	65 trips (0.8%)
842	1485	30	4%	27%	(0.8%) (0.6%) (0.8%) (0.8%) (100 (100 (100 (100 (100 (100 (100 (10
841	1460	26	7%	31%	(1.55) (2.5%) 888/friting 122 McLean
840	1403	26	3%	24%	
839	1177	25	4%	37%	Julies Cast
838	1359	26	6%	34%	0 1% 10% (0.8%) (0.8%) (0.8%)
837	1272	28	3%	30%	
836	1397	28	8%	45%	Selected link or study area
835	1732	33	6%	36%	0 1 2 3 mi [12:3]

Measuring a large employer's impact on commutes

Question: How can an MPO determine impact of large employers on regional commutes?

Answer: A scan of greater San Diego region with 1 km² grids shows distribution of homes for employees of a major San Diego area employer.

Where to add new bike facilities in Atlanta?

Question: Can Big Data help planners understand where new bike facilities should be located?

Answer: A scan of Atlanta region with 1 km² grids "lit up" areas with highest volume of short trips under 2 miles.

Identifying popular truck routes out of POLA/POLB

Validating Rural AADT Counts

Question: Are the DOTs old rural AADT counts accurate?

Answer: StreetLight's AADT counts returned with one outlier. Further analysis and field inspection revealed that one of the DOT's sensor was mislocated in a much lower traffic segment of the road.

A Look Ahead: Multi-modal Trip Analysis

- Proprietary and Confidential -

34

Machine Learning Approach to non-Mode IDed Data

