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Outline of the Talk

Motivation

From static to dynamical traffic networks

Dynamics = capacity constraints + route choice + traffic control

Stability and resilience

Conclusion and future work
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Motivation

Costs of traffic congestion [TTI TAMU urban mobility report 2012]

Financial cost: $ 121 Billion
Time wastage: 5.5 Billion hours
Health, environment, etc.

Vulnerability to arbitrary and malicious ’shocks’

Typical monday at 18:30

disruption−−−−−−→

Monday 11/07/11 at 18:30
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From centralized to distributed traffic control

Intelligent Transportation Systems (ITS)

Intelligent Transportation Systems (ITS)

Renewed interest: limited capacity of physical infrastructure, rapid
advancements in information technology

Cyber physical: wireless devices as sensory and actuation modes

Transportation networks prone to disruptions
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Increased resilience to failure of control modules

Scalability with respect to network size

On-board computation

Trade-off between performance and distributedness
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Key elements of traffic models

infrastructure capacity driver choice

traffic light
congestion pricing
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Network flow

o1o1
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d3

Flow capacity on every link

Flow conservation at every node

Maximum feasible load =
bottle-neck capacity

Static framework

Centralized

Framework of choice for planning purposes
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Congestion games

fig14

λin

Traffic distribution is the outcome of a
non-cooperative game between drivers

Driver decisions are dynamic

Driver decisions are myopic

fig46

trip
execution

route
choice

information
update

Equilibrium outcome

Adaptability to disturbances

Static

Global decision dynamics
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From static to dynamical model

fj→e flow routed from j to e

foute =
∑

outgoing j

fe→j

f ine =
∑

incoming j

fj→e

e

E−e E+e

j
fj→e

e

f in
e

f out
e
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Stability and resilience of transportation networks
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Quantifying stability and resilience

Stability
Network is stable if output equals input

For unstable networks, delay is infinite

Response to ’small’ disturbances

λin λout(t)
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Resilience
Link disturbance = loss in capacity

Network disturbance =
∑

link
disturbances

Smallest malicious disturbance that
destabilizes the network
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Influence of route choice decisions

fe→j = DeGj

Gj : fraction of drivers choosing link j

fig45

e
j

k

Cooperative route choice decisions

business as usual congestion
=⇒ business as usual decision

G∗j (eqm) = eqm route choice

choose links with less congestion

∂G∗j
∂ρk

≥ 0

Example: i-logit

utilityi = myopia + inertia
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Cooperative route choice decisions

business as usual congestion
=⇒ business as usual decision

choose links with less congestion

Example: i-logit

utilityi = myopia + inertia

If the load on the system is feasible, then G∗ is stabilizing

Within the constraint of not controlling the inflow, G∗ performs best

G∗ does not give the maximum possible resilience

The gap increases with the network size

Resilience = min node residual capacity

Upper bound on the margin of stability

Bound under information constraint

Minimum node residual capacity:
γ(G, ρ∗) ≤
minu∈V\{D}

∑
e∈Eu+

(µmax
e − f∗

e ) ∀G

Bound with no information constraint

Minimum network residual capacity
γ(G, ρ∗) ≤ ∑

e∈min cut (µmax
e − f∗

e ) ∀G
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Examples of suboptimal route choice

passive routing

aggressive routing
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Back to the general case

ρ̇e = f ine − foute

fj→e flow routed from j to e

foute =
∑

outgoing j

fe→j

f ine =
∑

incoming j

fj→e

e

f ine

f oute

ρe
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Cooperative routing

Boundary conditions

Empty link =⇒ no outflow

No flow towards congested links

Fully congested links give maximum
outflow if there is room downstream E+

j

j

fj→e
e

k
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Cooperative routing

increase in congestion =⇒ increase in
outflow

∂fj→e

∂ρj
≥ 0

avoid congested links

∂fj→e

∂ρk
≥ 0

increase in downstream congestion =⇒
decrease in outflow

∂foutj

∂ρk
≤ 0

E+
j

j

fj→e
e

k

Control based on local information

Backward propagation of information
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Performance of cooperative routing

Feasible load =⇒ network is stable

Infeasible load =⇒ there exists a
unique bottleneck which gets jammed
simultaneously.

Entire network is shut down or no link
is jammed

U
∂U+

∂U−

O

D

λo

Maximum possible network stability and resilience
Resilience = network residual capacity

Graceful failure
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Implications for planning

Quantitative framework for resilience

Dependence of resilience on traffic load, network structure, link
capacity and route choice behavior

Resilience as a social objective for transportation planning

Resilience not aligned with typical social objectives such as delay
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Current and future work

Comprehensive study of resilience under a variety of practical
constraints on traffic flow

From analysis to control of traffic flow

Connection between agent-based and macroscopic models

Tradeoff between resilience and delay

Extension to other infrastructure networks
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Traffic flow theory

Cell Transmission Model for Networks:fig45

e
j

k

fig 44

e

j

k

fe!j

fe!k

Outflow from link e depends on congestion on j and k

Ratio between fe→j and fe→k is independent of congestion on j and k
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From static to dynamical model

Mass conservation

ρ̇e = f ine − foute

Constraints

Density capacity on every link

Flow capacity on every link

e

f ine

f oute

ρe

f ine and foute depend on traffic flow, route choice and signal control︸ ︷︷ ︸
dynamic

Ketan Savla (CEE, USC) Dynamical Traffic Networks September 25, 2013 2 / 2


	Appendix

