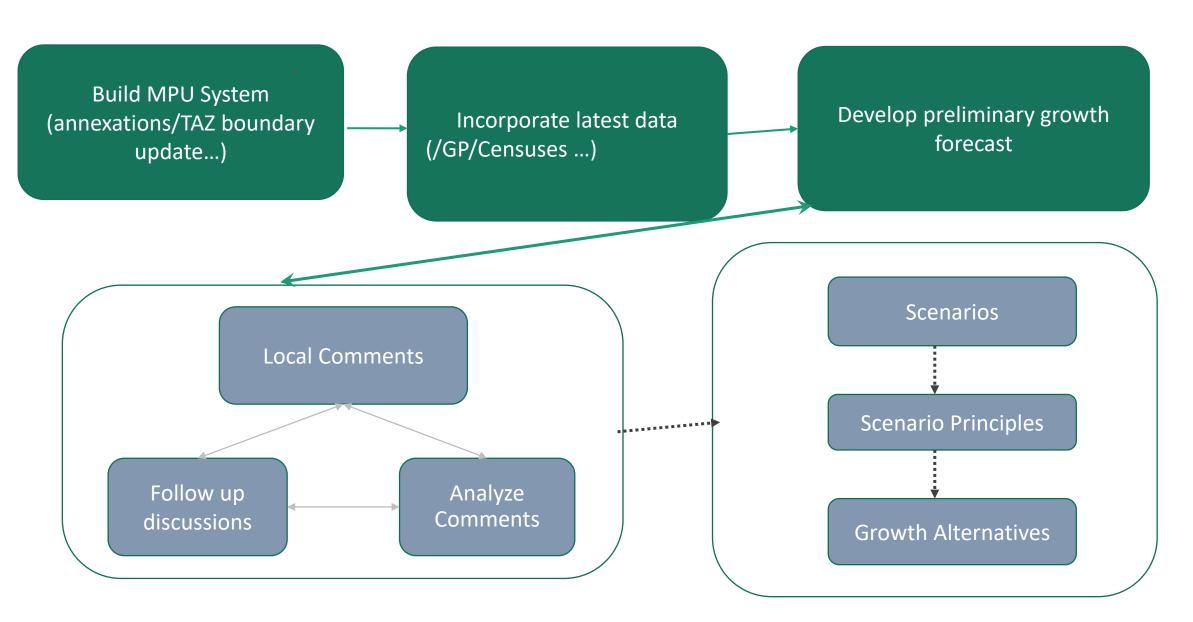
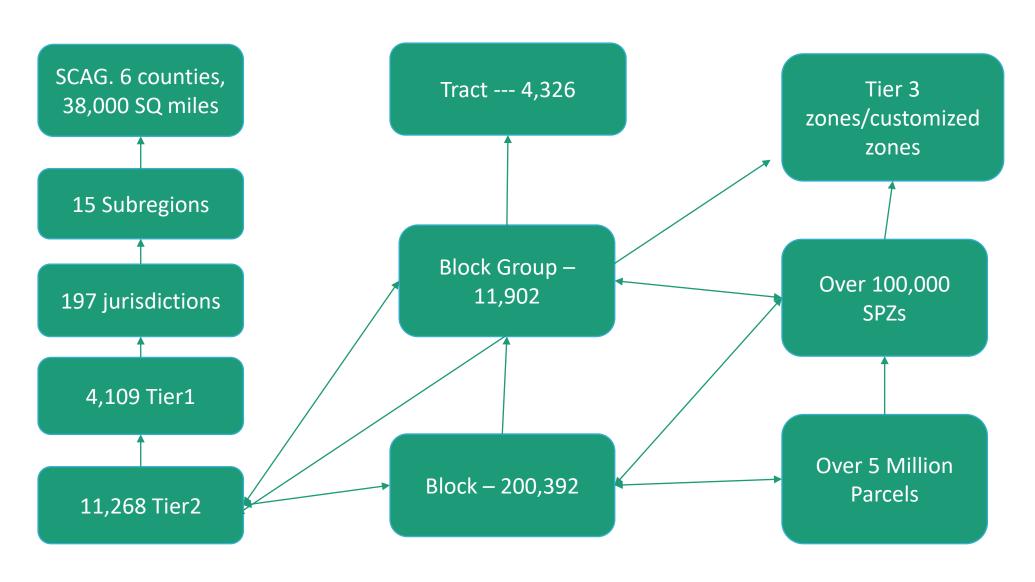


SCAG SOCIOECONOMIC DATA DEVELOPMENT FOR TRANSPORTATION MODEL

Modeling Task Force Meeting September 28, 2022

Forecasting Unit
Modeling & Forecasting
SCAG


Growth Forecasting Functions


Sub-County Growth Forecast Goals

- Under CEHD, TWG, and other SCAG committees' guidance, develop Sub-county levels including jurisdictions and TAZ socioeconomic estimates and projections
- Build growth projection analytical framework and database for federal and state mandated long-range planning
 - ✓ Regional Transportation Plan /Sustainable Communities Strategy (RTP/SCS)
 - ✓ Air Quality Management Plan (AQMP)
 - ✓ the Federal Transportation Improvement Program (FTIP)
 - √ the Regional Housing Needs Assessment (RHNA)

Sub-County Growth Forecast Development

SCAG Region Geographical Zones

County Level Projections

Input

Key Controls: POP, Household, EMP (Expert panel/local input)

DOF: Population Projection, 2010-2060 (by Age, Gender, and Race/Ethnicity)

ACS PUMS: Distributions by Age, Gender, and Race/Ethnicity

Decennial Census: Demographic correlation distributions

Projection

Group Quarter

POP: Age, Race/Ethnicity/Worker status,

Household: Size, Type, Income, age

Worker by Industries

Socioeconomic Data Process

Input

County Level Projections

- Pop by age, race/ethnicity
- Household by type
- EMP by sectors
- Residential Pop, GI, GN
- K12, College Enrollment
- Other secondary variables

Tier2 Level Projections

- Pop, Household, EMP, Sectors
- Residential Pop, GI, GN
- K12, College Enrollment

Census Decennial Data

Census block level demographic interrelation

ACS Data

- PUMS
- Current 5-year data

PopSyn Control (Tier2)

Probabilistic Choice Models (Multinomial Logit Model)

POP: Age, Race/Ethnicity, Gender

Household: Size, Housing Type, Income, Age

Worker: Worker status, Earning

Employment: Earning

Constant Share Method

Group Quarters in Dormitories

PopSyn Output (ABM / TBM)

POP:

Age, Race/Ethnicity, Group Quarters in Dormitories

Household:

Size, Housing Type, Income, Age # of Workers, Children, College Students

Worker:

Worker status, Earning

Employment:

Earning, Sectors

Enrollment: K12 and College

TAZ level Growth Forecast

- **✓**TBM
- ✓ Environment Justice(EJ)
- **✓** AQMP
- **✓**ABM

--- POPsyn Process

PopSyn, what for?

- Creates data of individual households and population
 - Similar to the Household Travel Survey (excluding travel-related questions)
 - Number of records of household file is same to the number of estimated (or projected) household
 - Consistent to the tables summarized by geography (like Census Tract, TAZ)
- Inputs to the ABM
- Reaggregated into summary tables, input to the TBM
- "PopSyn" for Population Synthesis.
 - But, it produces synthetic households
 - By sampling, not by assembling
 - Name is relic from former generation, "PopGen"

What is inside?

- Technical Aspects...
 - Written in Python 3.8 with numpy / pandas.
 - No dependency to DB
 - Control targets at multiple geographies
 - Distribution Synthesis results to smaller geography
 - Discretize (integerize) the household weights
- Methods IPF/IPU/LB (List Balancing)

Multi-geography Control Targets

- Region-Level:
 - Households by number of workers
 - Workers by 20 industrial sectors,
 - Especially workers reside in Imperial County, in Version 3.8
- County-Level:
 - Median household income
- TAZ-Level:
 - Households by size (5), income (5), housing type (4)
 - Persons by age group (5), race/ethnicity (6), worker

Simultaneous LB

- Collect all controls and do LB at PUMA
 - Region/County-Level controls to PUMA, and TAZ
 - TAZs within a PUMA share the PUMS 5% sample
 - Synthesis of PUMA is not same to the sum of TAZ Synthesis
- Way to reconcile the discrepancy
 - Version 3: Run LB for all TAZs excepting the largest one (TAZ with most household).
 - Version 3.8: Run LB for all TAZs simultaneously, adjust the weights to maintain the PUMA level synthesis over iteration.

Discretize the Household Weights

- Weight of household sample is the product of LB. Weight is real number with fraction
- Version 3
 - A linear optimization module to solve a penalty function to get [0, 1]
 - Caused system halt in some cases.
- Version 3.8
 - A combinatorial optimization module generates "many" sets of [0, 1] and evaluate the set against a penalty function.

IPF / IPU / List Balancing

- IPF (Iterative Proportional Fitting) to adjust known distribution according to new marginal totals.
 - OD matrix based on distance matrix, according to Origin / Destination
 - Joint table of households by [household income] and [household size], based on 2016 PUMS distribution, for 2050 projection.
- IPU (Iterative Proportional Update) to adjust weight of samples to meet the marginal controls proportionally
 - Adjust the weights by control variables of households and population sequentially

IPF / IPU / List Balancing

Illustration of IPU Algorithm

Variable	Weight	Household Type		Person Type			Weight					
		1	2	1	2	3	1	2	3	4	5	Final Weight
Household ID												
1	1	1	0	1	1	1	11.67	11.67	9.51	8.05	12.37	1.36
2	1	1	0	1	0	1	11.67	11.67	9.51	9.51	14.61	25.66
3	1	1	0	2	1	0	11.67	11.67	9.51	8.05	8.05	7.98
4	1	0	1	1	0	2	1.00	13.00	10.59	10.59	16.28	27.79
5	1	0	1	0	2	1	1.00	13.00	13.00	11.00	16.91	18.45
6	1	0	1	1	1	0	1.00	13.00	10.59	8.97	8.97	8.64
7	1	0	1	2	1	2	1.00	13.00	10.59	8.97	13.78	1.47
8	1	0	1	1	1	0	1.00	13.00	10.59	8.97	8.97	8.64
Output measure												
Weighted sum		3.00	5.00	9.00	7.00	7.00						
Constraints		35.00	65.00	91.00	65.00	104.00						
δ^a_b		0.9143	0.9231	0.9011	0.8923	0.9327						
Weighted Sum 1		35.00	5.00	51.67	28.33	28.33						
Weighted Sum 2		35.00	65.00	111.67	88.33	88.33						
Weighted Sum 3		28.52	55.38	91.00	76.80	74.39						
Weighted Sum 4		25.60	48.50	80.11	65.00	67.68						
Weighted Sum 5		35.02	64.90	104.84	85.94	104.00						
δ_a^b		0.0006	0.0015	0.1521	0.3222	0.0000						
Final weighted sum		35.00	65.00	91.00	65.00	104.00						

Note: δ = deviation measure. Text in bold signifies that the weighted sum for a control variable has been matched with the corresponding constraint.

^aAverage of $\delta_b = 0.9127$.

^bAverage of $\delta_a = 0.0954$.

IPF / IPU / List Balancing

- List Balancing
 - Things similar to IPU
 - Recreates estimate (synthesized variables), compares to controls, updates the weights
 - Sequential updates by each control variables
 - Things not same to IPU
 - The updating factor is calculated according to the solution of "Entropy" optimization problem.

$$egin{aligned} X &= \sum_i w_i \cdot a_{ij} \;, Y = \sum_i w_i \cdot a_{ij}^2 \ &\exp(\lambda_j) = 1 - rac{\sum_i w_i \cdot a_{ij} - b_j \cdot \gamma_j}{\sum_i w_i \cdot a_{ij}^2 + b_j \cdot \gamma_j \cdot rac{1}{lpha_j}} \ &= 1 - rac{X - b_j \cdot \gamma_j}{Y + b_j \cdot \gamma_j \cdot rac{1}{lpha_j}} = c_j \ &\hat{w}_i = w_i \cdot c_j^{a_{ij}} = w_i \cdot \exp(\lambda_j \cdot a_{ij}) \ &\hat{\gamma}_j = \gamma_j \cdot c_j^{-rac{1}{lpha_j}} = \gamma_j \cdot \exp(\lambda_j \cdot -1/lpha_j) \end{aligned}$$

Thank YOU!

Ying Zhou, zhou@scag.ca.gov, 213/236-1943
Sungbin Cho, cho@scag.ca.gov, 213/236-1989